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Chapter 1 —  MMU Introduction 

In this section: 
• Overview 

• Memory Model 

• MMU Features 

• Programming Model 
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Overview 
The following aspects of the ARC® 700 Memory Management Unit (MMU) are covered: 

• ARC 700 Memory Management Options 

• ARC 700 Translation Lookaside Buffer (TLB) 

• ARC 700 Page Descriptors 

• Memory Mapping and Operating Modes 

• Memory Management Related Exceptions 

• Writing ARC 700 TLB Miss Exception Handlers 

MMU Features 
The MMU features are as follows: 

• Software managed 

 Page Table walking, TLB entry loading 

 Marking of valid pages 

 TLB entry removal 

• Hardware suggested replacement policy 

 The software can either rely on the hardware to supply a location for new entries, or use its 
own algorithm 

• Unified address space for instruction and data 

• Common address space for kernel and user modes 

• 8-bit address space identifier (ASID) 

• 4Gb physical addresses address space 

• 2Gb translated memory per address space 

• Fixed 8k page size 

• Separate read/write/execute flags for user and kernel modes 

• Cache and memory system controls 

• Global access control 
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Memory Model 
The ARC 700 processor supports virtual memory addressing if the optional Memory Management 
Unit (MMU) is present. If the MMU is not present or a MMU is present but is disabled, all logical 
addresses are mapped directly to physical addresses. By default, the MMU is disabled after reset. 
Note that the Data Uncached Region is always active even if the MMU is disabled. 

The optional Memory Management Unit features a Translation Lookaside Buffer (TLB) for address 
translation and protection of 8Kb memory pages, and fixed mappings of un-translated memory. The 
upper half of the un-translated memory section is uncached (for IO uses) and the lower half of the un-
translated memory section is cached (for operating system kernel).  

The 32-bit ARC 700 architecture features a 32-bit physical address space, and a 32-bit virtual address 
space extended by an 8-bit address space identifier (ASID). 

With the optional MMU in place, the ARC 700 architecture defines a common address space for both 
instruction and data accesses. The memory translation and protection systems can be arranged to 
provide separate non-overlapping protected regions of memory for instruction and data access within 
a common address space. 

The ARC 700 address space is unified - separate address spaces for code and data are not permitted. 

The programming interface to the Memory Management Unit has been designed to be independent of 
the configuration of the TLB - in terms of the associativity or number of entries.  

NOTE Dirty pages are managed by an operating system using the protection bits. A ‘clean’ page will be 
marked as read-only. On the first write, the ‘real’ permissions will be restored and the page marked 
dirty. A similar scheme for reads will also be used to identify ‘used’ pages. 

 

 Logical Address Space 

 
 
 
 
 

Physical memory 

 
Untranslated 
(kernel only) 

 
Translated 

(user/kernel) 

Physical Address Space

Uncached 

Cached 

 
Figure 1 Architecturally Defined Address Mapping 

Translation Lookaside Buffers 
To provide fast translation from virtual to physical memory the MMU contains Translation Look-
aside Buffers (TLBs). The MMU can be thought of as a two level cache for page descriptors: The 
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µITLB and µDTLB at level one, and the main (or Joint) TLB at level two. The µITLB and µDTLB 
contain copies of the content in the Joint TLB. 

In addition to providing address translation, the TLB system also provides cache control and memory 
protection features for individual pages. 
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Figure 2 MMU Structure 

The ARC 700 implementation features a system configured as follows: 

• The µITLB and µDTLB are fully associative and physically located alongside the instruction 
cache and data cache, respectively, where they perform the virtual and physical address 
translation. The µITLB and µDTLB are hardware managed. On a µITLB (or µDTLB) page miss 
the hardware fetches the missing page from the main TLB. 

• The Main Translation Lookaside Buffer (TLB) consists of two-way set associative Joint 
Translation Lookaside Buffers (JTLB), with 256 entries. The Joint TLB is software managed. On 
a joint TLB page miss the operating system has to fetch the missing page descriptor from memory 
and store it into the Joint TLB. No part of the MMU has direct access to the main memory. The 
Joint TLB is filled by software through an auxiliary register interface. The instruction that caused 
the µTLB miss is retried while the JTLB is interrogated. 

Programming Model 
The programming interface consists of three main components: 

• Page table descriptor 
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• Privileged auxiliary registers for TLB access 

• Memory Management Exceptions 

• Physical Address Calculation 

Some Memory Configuration Examples are also provided. 
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Chapter 2 —  Page Table Descriptor 

In this section: 
• Page Tables 

• Page Descriptor 

• Restrictions of Page Mapping 

• Page Descriptor Format 

• TLB Indices Arrangement 

• MMU Build Configuration Register, MMU_BUILD 

• Data Uncached Build Configuration Register, DATA_UNCACHED 
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Page Tables 
Operating Systems that utilize memory management units to implement both virtual memory and 
address translation must maintain a data structure that describes how pages from the virtual memory 
space of each process relate to pages in both physical memory and external storage - such as a disk-
based swap file. This data structure is called the Page Table.  

The Translation Lookaside Buffer (TLB) is provided as a cache to store the most recently used entries 
from the Page Table. Loading of entries into the TLB from the Page Table in the ARC 700 
architecture is performed under the control of software - this is generally referred to as software page 
table walking.  

Since the loading of TLB entries is under the control of software, the structure of the page table is not 
within the scope of this information. However it is expected, but not required, that a multi-level page 
table structure will be implemented, with a component of the lowest level (leaf) entries being ARC 
700 page descriptors, in the format described later in this section.  

A second component of this structure would typically be a set of flags for the page, maintained by the 
OS for its own purposes. 

Page Descriptor 
Memory mapping is performed in blocks of 8Kb pages. The address space is unified (code and data 
share the same address space). 

In order to map any page of physical memory into the virtual address space of a process, a page 
descriptor is required. This page descriptor is stored in the operating system page table in main 
memory, and the most recently used page descriptors are kept in the on-chip TLB (and in the µITLB 
and µDTLB) for fast access. 

The page descriptor is an 8-byte structure that specifies the following for each page in use by the 
virtual memory system: 

• In which virtual address space does it appear? 

 The ARC 700 processor allows for 256 separate virtual address spaces using an 8-bit address 
space identifier (ASID). 

 If a page of physical memory is to appear in more than one virtual address space, a separate 
page table entry is usually required for each of the address spaces in which the page appears. 
The only exception to this is when the page appears in all address spaces - this is a globally 
accessible page. 

• Is it marked as global - available in all virtual address spaces? 

• Its location in the virtual address space? 

• The page in physical memory to which it is mapped 

 Or the page to be used from a swap file on disk if the page is not presently in physical 
memory 

• The access permissions 
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 The ARC 700 processor allows a page to have separate read, write and execute permissions 
to for user and kernel mode tasks. 

 This feature is provided to allow operating systems with high-reliability requirements to 
protect pages against unexpected accesses from both user tasks and the operating system 
itself. 

• Whether the page table entry is valid 

 Invalid entries will not be considered by the MMU, and will be evicted before a valid entry 
on a TLB miss 

• How the memory hierarchy should perform accesses to the page 

 Cache parameters  

Restrictions of Page Mapping 
The general rule is that any virtual page can be mapped to any physical page as long as it is aligned to 
the page size of 8Kb. However, there are three restrictions to this rule. The first one relates to shared 
pages, the second restriction relates to Closely Coupled Memories (CCMs) and the third relates to 
large cache sizes. 

• Restriction for Shared Pages 

• Restriction for Pages Mapped to CCMs 

• Restriction for Pages Using Large Caches 

Restriction for Shared Pages 
When two or more virtual pages map to the same physical page, then this physical page is called a 
shared page. Shared pages can suffer from a problem called cache aliasing, this is when a shared 
physical page is held in more than one virtual address in the cache RAMs. Cache aliasing is 
undesirable as it is inefficient to have to check many cache RAM addresses to find a cache line.  

Cache aliasing is avoided by requiring the shared page to be set to the same size as the largest cache 
way size in the design, but never to less than the standard page size of 8Kb. The benefit of this 
restriction is that the part of the virtual address which is applied to the cache RAMs is always the 
same as the same part of the physical address. Consequently, any virtual address can only be mapped 
to one single physical address. 

In ARC 700 processor the cache way sizes are as follows: 

• 32Kb for the 2-way 64Kb instruction cache 

• 16Kb for the 2-way 32Kb instruction cache 

• 16Kb for the 4-way 64Kb data cache 

• 8Kb or less for all other ARC 700 cache configurations 

For example, assuming the design contains a 64Kb instruction cache and a 64Kb data cache. 
According to the list above the cache way size is 32Kb for the instruction cache and 16Kb for the data 
cache. The largest of these two is the way size of the instruction cache. Consequently shared pages 
must be 32Kb. Larger pages are constructed by defining several contiguous 8Kb pages. In this case 
the following page mapping could be performed: 
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• Virtual page 0x10000 is mapped to physical page 0x18000 (page 1) 

• Virtual page 0x12000 is mapped to physical page 0x20000 (page 2) 

• Virtual page 0x14000 is mapped to physical page 0x22000 (page 3) 

• Virtual page 0x16000 is mapped to physical page 0x24000 (page 4) 

NOTE There are four 8Kb pages in the list above to form the shared 32Kb page. Also note that both the 
virtual page 0x10000 and the physical page 0x18000 are aligned to the size of the shared page (32 
Kb) 

 

Large Instruction Cache Aliasing 
The ARC 700 MMU has a fixed page size of 8K bytes. Its caches are physically tagged and virtually 
indexed, with Instruction cache and Data cache fixed respectively at 2-way and 4-way. As cache size 
increase (Instruction cache beyond 16 KB and Data cache beyond 32KB), the virtual index used in 
cache access overlaps with the lower bits of the translated tag. 

Therefore, the virtual index has the potential to no longer be guaranteed to be identical to the physical 
index. This ambiguity could lead to the classic cache aliasing problem. However, for large cache 
configurations, the cache tag field is extended and is mostly transparent to software.  

Changes occur during in the low level direct RAM access by the processor. In particular, the TAG 
field in the IC_TAG (0x1B) auxiliary register is extended, when necessary, to hold the physical tag. 
In cases of large caches, this means some of the higher order bits of the INDEX field of these two 
registers are lost. However, the same info can be retrieved from the IC_RAM_ADDR (0x1A) 
auxiliary register. 

Kernel code dealing with cache invalidating, cache flushing and line locking will have to deal with 
these differences. In particular, when writing to the registers IC_LIL (0x13) and IC_IVIL (0x19), the 
physical address has bits 4:0 replaced by bits 17:13 of the corresponding virtual address.  

Debug operations using IC_RAM_ADDR (0x1A) are affected. When writing to IC_RAM_ADDR 
(0x1A) in cache controlled mode, the physical address has bits 1:0 replaced by bits 14:13 of the 
corresponding virtual address. 

Restriction for Pages Mapped to CCMs 
Pages that are mapped to either the Instruction Closely Coupled Memory (ICCM) or the Data Closely 
Coupled Memory (DCCM) must be of the same size as the CCM. This avoids the problem that the 
physical address is not available early on in the microprocessor pipeline at the time when the address 
is applied to the CCMs. By adhering to this restriction the part of the virtual address that is applied to 
the CCMs is the same as the same part of the physical address, which means that it is not necessary to 
wait for translation. 

For example, assuming the design contains a 16Kb DCCM. Larger pages are constructed by defining 
several contiguous 8Kb pages. In this case the following page mapping could be performed: 

• Virtual page 0x10000 is mapped to physical page 0x14000 (page 1) 

• Virtual page 0x12000 is mapped to physical page 0x16000 (page 2) 

NOTE There are two 8Kb-pages in the list above to form the 16Kb DCCM page. Also note that both the 
virtual page 0x10000 and the physical page 0x14000 are aligned to the size of the DCCM (16Kb). 
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Restriction for Pages Using Large Caches 
The ARC 700 caches are both virtually indexed and physically tagged. This means that the address 
(i.e the index) applied to the cache RAMs is the virtual address, but the address used to compare the 
cache tags is the translated physical address. The micro architectural benefit of having this setup is 
that the cache RAM lookup can start one cycle earlier and therefore does not have to wait for the page 
translation to complete before accessing the cache RAMs. 

For small caches the virtual and physical index are identical, but for large caches they can be 
different. When the virtual and physical indexes are different then one physical tag can be held in 
several different indexes. This problem is called cache aliasing. In the ARC 700 processor cache 
aliasing is avoided by restricting the page allocation in such a way that the virtual and physical 
indexes are always identical. 

Cache aliasing only occurs in the ARC 700 processor for instruction caches of sizes 32KB to 64Kb 
and for data caches of the size 64Kb. The restrictions for page allocations are as follows: 

• 64Kb data cache and 32Kb instruction cache - address bit 13 must be the same for both the 
virtual and physical address. For example virtual address 0x2000 can be mapped to physical 
address 0x102000 but not to 0x100000. 

• 64Kb instruction cache - address bits 13-14 must be the same for both the virtual and physical 
address. For example virtual address 0x6000 can be mapped to physical address 0x106000 but 
not to 0x100000, 0x102000 or 0x104000. 

Page Descriptor Format 
The 32-bit ARC 700 page descriptor consists of two 32-bit words, and is arranged as follows. The 
first word relates to TLB Page Descriptor 0 (TLBPD0), the second to TLB Page Descriptor 1 
(TLBPD1). 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

R V[17:0] R V R G A[7:0] 

 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

P[18:0] Reserved R
K 

W
K 

E
K 

R
U 

W
U 

E
U 

F
C 

R 

The following fields are described in more detail: 

• V[17:0] - Virtual Page Number 

• V - Valid 

• G - Global 

• A[7:0] - Address Space Identifier ASID 

• P[18:0] - Physical Page Number 

• RK, WK, EK - Kernel Mode Permission Bits 

• RU, WU, EU - User Mode Permission Bits 

• FC - Cached/Uncached Flag 
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V[17:0] - Virtual Page Number 
This 18-bit field provides the virtual page number corresponding to this page descriptor (Virtual 
address shifted right by 13 bits, and top bit masked off). The memory management unit checks the 
virtual address of an incoming request against the entries in the translation lookaside buffer. If a 
matching entry is found, the physical address can be calculated. The field is aligned in the page 
descriptor to allow generation from a 32-bit address using a simple AND operation. 

Bit 31 of TLB Page Descriptor 0 is not included in this field since translated memory is only available 
in the lower 2Gb of the address space. 

V - Valid 
This bit field is used to indicate whether an entry in the TLB should be considered during a memory 
access when checking for a matching TLB entry. When cleared, it is used by the MMU to determine a 
suggested entry for replacement - invalid entries will always be chosen before a valid entry is evicted. 

G - Global 
This bit is used to indicate whether the page is global: 

• When set true (1) 

 This page appears in all virtual address spaces 
- ASID bits for this entry are ignored, and must be set to zero 

• When set false (0) 

 This page appears in a single virtual address space as described by the ASID bits A[7:0] 

If a page is required to be mapped into more than one address space: 

• If the page is to be available in all address spaces, with identical access requirements, a single 
page table entry may be used with the global bit set. 
It is the responsibility of the operating system to ensure that a globally available page does not 
overlap with a page at the same location in a single address space - this condition will cause a 
fatal machine-check exception. 
Page read/write/execute permissions are not considered when testing for multiple overlapping 
pages - hence it would seem to be possible to set up a global page accessible only by the 
operating system in kernel mode, and a page at the same address only accessible by one user 
mode task. However this arrangement is not permitted and will cause a fatal machine check 
exception. 

• If the page is to be available in some but not all address spaces, or if it is to be available in all 
address spaces, but with different access privileges, then a separate page table entry is required 
for each virtual address space in use. 

The global bit is typically used for mapping private operating system memory pages - in which case it 
would not be used with user mode read/write/execute permissions.  

In other operating system or RTOS systems, this mode may be used for data or code areas shared 
between all processes and the operating system. 

A[7:0] - Address Space Identifier ASID 
These bits describe the 8-bit address space identifier (ASID) that can be considered to be an extension 
of the virtual address.  
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When the global bit G is set false, and a memory access is taking place, these bits are tested against 
the current task’s ASID from the machine status register (PID) to determine whether a TLB match 
has taken place.  

With an 8-bit ASID, it follows that the ARC 700 processor supports up to 256 concurrent virtual 
address spaces. 

P[18:0] - Physical Page Number 
This 19-bit field is used for virtual to physical address translation, as follows: 

• When the entry is marked valid: 

 This virtual memory page is present in physical memory 

 This field describes the physical page in main memory that is used for accesses to the virtual 
page. The high order bits of the physical address (page number) come from this field, and the 
bottom twelve bits (page offset) come from the bottom twelve bits of the virtual address. 
The physical page can be located anywhere in the full 32-bit (4Gb) address space. 

• When the entry is not marked valid 

 This virtual page is not present in physical memory. Only useful in an operating system 
supporting demand-paged virtual memory. 

 This field would typically be used by the OS to indicate the location of the page in a disk-
based swap file. 

The physical page number of a block is the address of the block shifted right by 13 bits (divided by 
8192). 

RK, WK, EK - Kernel Mode Permission Bits  
Each ARC 700 page descriptor features separate access control bits for user mode and kernel mode 
tasks.  

It should be noted that these do not form part of the addressing mechanism - it is not permissible to 
have more than one TLB entry mapped to the same virtual address - even if the access permissions do 
not overlap. 

An exception will be generated if an access is attempted which violates the access permissions for the 
page. The access will not complete. 

These three bits control the permissions granted to tasks, interrupts or exception handlers running in 
kernel mode or other operating system functions using kernel mode. Setting the bit true (1) indicates 
that the permission is granted. 

• RK - Kernel mode read permission 

• WK - Kernel mode write permission 

• EK - Kernel mode execute permission 

See the subsection later in this section for more discussion regarding typical setting of the permission 
bits. 
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RU, WU, EU - User Mode Permission Bits  
Each ARC 700 page descriptor features separate access control bits for user mode and kernel mode 
tasks.  

It should be noted that these do not form part of the addressing mechanism - it is not permissible to 
have more than one TLB entry mapped to the same virtual address - even if the access permissions do 
not overlap. 

An exception will be generated if an access is attempted which violates the access permissions for the 
page. The access will not complete. 

These three bits control the permissions granted to tasks running in user mode. Setting the bit true (1) 
indicates that the permission is granted. 

• RU - User mode read permission 

• WU - User mode write permission 

• EU - User mode execute permission 

See the subsection later in this section for more discussion regarding typical setting of the permission 
bits. 

FC - Cached/Uncached Flag 
This bit controls cache operation when accessing this bit of virtual memory. 

• The default condition is to set this bit true to indicate that caches may be used for accesses to this 
page.  

• When this bit it set false, accesses to this page are sent directly to external memory, bypassing 
caches. This can be used for IO register space or volatile data areas - such as a region of memory 
where data is written by a DMA transfer. 

It is the responsibility of the operating system (or user code) to ensure that the cache does not contain 
entries from pages that are marked uncached. This is to ensure that the cache does not contain old 
data that might either be flushed into the uncached page at some later point, or which might be used 
incorrectly if a page is subsequently marked cached. 

When more that one virtual page is mapped to the same physical page, all pages must have the same 
setting for cached/uncached flag. 

In addition to the cached/uncached switch in the page descriptor, individual load and store 
instructions have a cached/uncached mode switch. Accesses are performed without caches if either 
the instruction or the page descriptor indicates uncached. Access use the caches only if both the 
instruction and the page descriptor indicate cached. 
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TLB Indices Arrangement 
The table below shows the arrangement of indices in the ARC 700 TLB: 

Table 1 ARC 700 Set-Associative TLB Indices 

Indices Description 

0x0 JTLB set 0 way 0 
0x1 JTLB set 0 way 1 
0x2 JTLB set 1 way 0 
0x3 JTLB set 1 way 1 
0x4 JTLB set 2 way 0 
0x5 JTLB set 2 way 1 
0x6 JTLB set 3 way 0 
0x7 JTLB set 3 way 1 
- - 
0xFC JTLB set 127 way 0 
0xFD JTLB set 127 way 1 
0xFE JTLB set 128 way 0 
0xFF JTLB set 128 way 1 
- - 
0x200 µITLB entry 0 
0x201 µITLB entry 1 
0x202 µITLB entry 2 
0x203 µITLB entry 3 
- - 
0x400 µDTLB entry 0 
0x401 µDTLB entry 1 
0x402 µDTLB entry 2 
0x403 µDTLB entry 3 
0x404 µDTLB entry 4 
0x405 µDTLB entry 5 
0x406 µDTLB entry 6 
0x407 µDTLB entry 7 

The privileged instructions for maintaining the ARC 700 TLB all use an index number. This field is 
also used to signal error and status information when an instruction asks for an index number to be 
returned. 

On all ARC 700 implementations, index numbers must start from zero and be continuous. In a set-
associative TLB, the way is specified with the low order bits of the index. 

The index scheme is arranged to allow future TLBs to be implemented with different number of 
entries and/or different associativity. For example, a future 4-way set-associate TLB would have 
indexes; 0 = set 0 way 0, 1 = set 0 way 1, 2 = set 0 way 2, 3 = set 0 way 3, 4 = set 1 way 0 and so 
forth.  
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NOTE A fully associative n-entry TLB effectively has one set with n ways, hence entries would be numbered 
0 = set 0 way 0, set 0 way 1 up to set 0 way n. 

 

0 1 

2 3 

4 5 

0 

1 

2 

n-2 n-1 n-1 

Way 0 Way 1 Fully associative 

Two-way set associative 

 
Figure 3 Fully-Associative and Set-Associative TLB Indices 

MMU Build Configuration Register, 
MMU_BUILD 
Build configuration register MMU_BUILD (0x6F) contains information for Operating Systems to 
determine the configuration of the Memory Management Unit. The default for the complete register 
for ARC 700 MMU version 0x1 is 0x01170408. Replacement algorithms are inferred from the 
version number. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Version JA JE ITLB DTLB 

The following table describes the fields in more detail. 

Field Description 

ITLB Integer number of ITLB/ µITLB entries 

Number of µITLB entries for ARC 700 (4) 

DTLB Integer number of DTLB/ µDTLB entries 

Number of µDTLB entries for the ARC 700 processor (8) 

JE Joint TLB contains 2JE entries, per way 

ARC 700 processor defaults to 0x7 (128 entries) per way 

JA Joint TLB contains 2JA ways 

ARC 700 defaults to 0x1 (2 ways) 

Version Version 

First MMU release for the ARC 700 processor has version number 0x1 
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Data Uncached Build Configuration Register, 
DATA_UNCACHED 
The build configuration register DATA_UNCACHED (0x6A) describes the Data Uncached region. 
Memory operations that access this region will always be uncached. Instruction fetches that access the 
same region will however be cached as this region relates to data only.  

This region, which is only present in builds with an MMU, is fixed to the upper 1 Gb of the memory 
map. As the upper 2 Gb of the memory is the un-translated memory region, the Data Uncached region 
is consequently both uncached and un-translated. This makes this region suitable for e.g. peripherals. 
Note that this region is active even if the MMU is disabled.  

The Data Uncached region is a part of the logical memory map and not part of the physical memory 
map. As a consequence, this region will not affect a page that is translated to a physical location that 
resides within the address range of the Data Uncached region. Instead, such a page would be cached 
or not depending on its cache flag. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

BASE_ADDRESS RESERVED SIZE VERSION 

The following table describes the fields in more detail. 

Field Description 

Version Version 

Current version number of this BCR is 0x1 

SIZE Size of the Data Uncached region 

0x0 - 16 MB 

0x1 - 32 MB 

0x2 - 64 MB 

0x3 - 128 MB 

0x4 - 256 MB 

0x5 - 512 MB 

0x6 - 1024 MB 

0x7 - 2048 MB 

The size is set to 0x6, i.e. 1024 MB. 

BASE_ADDRESS Base address of the Data Uncached region 

As it must be in the upper half of the memory space (which is the un-translated 
region) this means that bit 31 must always be set to 1. 

The base address is set to 0xC0. 

Reserved Reserved 

Should be set to zero. 
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Chapter 3 —  Privileged Auxiliary Registers for 
TLB Access 

In this section: 
• Maintenance and Control 

• TLB Page Descriptor Registers, TLBPD0 and TLBPD1 

• TLB Index Register, TLBIndex 

• TLB Command Register, TLBCommand 

 TLBWrite Command 

 TLBRead Command 

 TLBProbe Command 

 TLBGetIndex Command 

• Process Identity Register, PID 

• Scratch Data Register, SCRATCH_DATA0 
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Maintenance and Control 
These auxiliary registers are provided for interaction between an operating system (or debugger) and 
the TLB: 

Table 2 Special Purpose Registers for TLB Control 

Auxiliary 
Register 

Name Read/Write Description 

0x405 TLBPD0 r/w TLB Page Descriptor register 0 

0x406 TLBPD1 r/w TLB Page Descriptor register 1 

0x407 TLBIndex r/w TLB Index register 

0x408 TLBCommand w TLB Command register (fully serializing) 

0x409 PID r/w Process ID, TLB enable 

0x418 SCRATCH_DATA0 r/w 32-bit scratch auxiliary register that can be used to 
store any data. The OS may for example use this 
register to hold the base address of the first level page 
table in order to speed up page table access. 

These registers may only be accessed when in kernel mode. An attempt to access these registers from 
user mode will result in an exception. 

In an ARC 700 processor write operations to the auxiliary registers are generally serializing, i.e. a 
pipeline flush occurs after the auxiliary write operation has committed. For best operating system 
performance, it is desirable to minimize time spent in TLB miss handlers - hence minimizing pipeline 
flushes is important. 

Writes to auxiliary registers TLBPD0, TLBPD1 and TLBIndex do not affect the operating environment of 
the processor until the TLBCommand register is written, so it is possible to make writes to auxiliary 
registers TLBPD0, TLBPD1 and TLBIndex non-serializing.  

Writes to the TLBCommand or PID register affects the processor operating environment directly and 
hence these writes are serializing. Writes to SCRATCH_DATA0 register are not serializing. Auxiliary 
read operations are not serializing. 

TLB Page Descriptor Registers, TLBPD0 and 
TLBPD1 
These registers are used for the following purposes: 

• To supply a page descriptor for subsequent loading into the TLB 

• To return a page descriptor from a TLB probe operation 

• The virtual page number field is used to specify the virtual address of a TLB entry to be removed 
(all other fields are ignored) 

• On TLB miss exceptions the TLB Page Descriptor register 0, TLBPD0, is updated with the VPN 
and ASID associated with the address that was the cause of the TLB miss exception. To aid the 
TLB miss handler, the global is cleared and the valid bit is set on TLB miss exceptions. 
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The layout of the register fields corresponds exactly to the ARC 700 page descriptors, see Page 
Descriptor Format. The operation of the TLB maintenance registers is not affected by the setting of 
the TLB-enable bit in the process identity register (PID [T]). All reserved bits in the page descriptor 
are set to zero. 

TLB Index Register, TLBIndex 
This register is set by the programmer to communicate the index for TLBWrite and TLBRead 
commands, and set by the hardware to communicate a result from the TLBGetIndex and TLBProbe 
commands. Bit 31 is set to indicate an error, i.e. a value of 0x8000.0000 or above indicates an error. 
See command descriptions for more information on usage. Writes to this register can be non-
serializing. The address in TLBIndex register is mapped as shown below. 

31                     10          0 

E Reserved Index 

The Reserved field is set to zero. The following fields are described in more detail: 

• Index, Read/Write 

• E, Error Code, Read only 

Index, Read/Write 
This part of the register is set by the programmer to communicate the Index for TLBWrite and 
TLBRead commands, and set by the hardware to communicate a result from the TLBGetIndex and 
TLBProbe commands. If an error has occurred (E is set) then the Index contains the error code. See 
command description in the TLBCommand section for more information on usage.  

Table 3 TLBIndex Addresses and Error Codes 

Access Type Address/Error Code Description 

JTLB  0x0-0xFF This allows both TLBWrite, TLBRead to 
be performed on the JTLB RAM. 

µITLB 0x200-0x203 This allows the entries in the µITLB to be 
read (TLBRead). 

µDTLB 0x400-0x407 This allows the entries in the µDTLB to be 
read (TLBRead). 

Error Code (E flag is set) 0x0 Failed operation.  

Error Code (E flag is set) 0x1 Duplicate TLB entries 

E, Error Code, Read only 
This bit is set by the hardware when an error has occurred. Writes to this flag are ignored. 
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TLB Command Register, TLBCommand 
This fully serializing register is used to initiate all transactions with the TLB. Data is communicated 
through the TLBPD0, TLBPD1 and TLBIndex registers. TLB command operations can still be 
performed when MMU is disabled (when the T bit is 0 in the PID register). 

The following commands are supported: 

Table 4 TLB Command Register Command List 

Cmd Name Description 

0x1 TLBWrite Write a TLB entry to the index location specified in TLBIndex. Also used 
to remove entries. 

0x2 TLBRead Read a TLB entry into TLBPD0 or TLBPD1 from the location specified in 
TLBIndex. 

0x3 TLBGetIndex Set TLBIndex to contain a suitable index location for the page descriptor 
in TLBPD0 or TLBPD1 or an error code 

0x4 TLBProbe Determine if a TLB entry is present that matches the virtual address 
supplied in TLBPD0 or TLBPD1, and return its index location or an error 
code in TLBIndex. 

 

TLBWrite Command 
This command is used to load an entry into the TLB at the specified index location. 

The operating system may determine an appropriate location for the entry by itself, or may ask the 
MMU hardware for a suggestion by using the TLBGetIndex command. 

The TLBWrite command is also used to remove (shoot down) existing entries, by loading an entry 
with the V bit set false. The TLBPD0 and TLBPD1 register bits would typically be set to all zeros before 
issuing a TLBWrite command. The operating system may determine on its own the index of the 
entry to be removed, or may use the TLBProbe command to return an index that corresponds to a 
virtual address/ASID combination. 

The TLBWrite command operation can still be performed when MMU is disabled (when the T bit is 
0 in the PID register). 

TLBWrite Usage  

• Page descriptor to be loaded into the TLB is brought into the TLBPD0 and TLBPD1 auxiliary 
registers. 

• TLBIndex contains the index location to which the entry is to be loaded.  

• TLBPD0 and TLBPD1 auxiliary registers are unchanged after the TLBWrite operation 

• If an invalid index value is supplied (out of range), the TLB Load request is ignored, and 
TLBIndex will be loaded with error flag E set and the Index field containing error code 0x0 (full 
value returned is 0x8000.0000). 

• Invalid entries may be loaded (V=0). Such entries will not be considered during lookup 
operations, however this feature allows an entry to be invalidated and also allows an entire 
save/restore of the TLB contents to be performed. 
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TLBRead Command 
This command is used to read an entry from the TLB, at the specified index location. The operating 
system may either determine the location to be read, or may use the TLBProbe command to obtain 
the location of an entry from a virtual address.  

The TLBRead command operation can still be performed when MMU is disabled (when the T bit is 
0 in the PID register). 

TLBRead Usage 
• The TLBIndex register contains the location from which the entry is to be read. 

• The read and write permission bits (in total 4 bits) are always set to zeros when reading entries in 
the uITLB. Read and write permissions only apply to the µDTLB. 

• The execution permission bits (2 bits) are always set to zeros when reading entries in the uDTLB. 
Execution permission only apply to the µITLB. 

• The reserved bits are always set to zeros when reading entries in the Joint TLB (writes to these 
bits are ignored). 

• TLBPD0 and TLBPD1 registers contain the TLB entry from the specified location. Entries in the 
TLB that are marked as invalid are returned as they appear in the TLB. 

 If an invalid index value is supplied (out of range), the TLBIndex will be loaded with error 
flag E set and the Index field containing error code 0x0 (full value returned is 0x8000.0000), 
and the TLB Read operation returns an entry with all bits set to zero.  

TLBGetIndex Command 
This command is used to allow the hardware to provide a TLB index to which a new entry may be 
loaded. This has a number of benefits: 

• The mechanism enables the creation of simple and fast TLB miss handlers that are independent of 
the size and associativity of the underlying TLB, and can rely on the hardware to manage the 
replacement algorithm. 

• An operating system that is aware of the configuration of the TLB can implement a different or 
more sophisticated replacement algorithm than is supported by the hardware - at the cost of 
increasing the number of cycles taken during TLB misses. 

• The handling of complex error conditions may be deferred to the operating system. 

The TLBGetIndex command operation can still be performed when MMU is disabled (when the T 
bit is 0 in the PID register). 

TLBGetIndex Usage 
• The page descriptor to be loaded into the TLB is brought into the TLBPD0 and TLBPD1 special 

purpose registers. 

 Certain implementations (e.g. fully associative) may not require the TLBPD0 and TLBPD1 
registers to contain the new page descriptor that is to be loaded. However, in order to ensure 
that a TLB miss handler may be used with any TLB, the page descriptor should always be 
loaded before executing the TLBGetIndex operation. 

• The TLBIndex register is loaded with the location to which the supplied page descriptor can be 
loaded.  
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 The replacement algorithm is pseudo-random. 

 An index value is always returned, no error conditions are returned 

• Invalid ways are selected first, before considering a pseudo-random generated victim. 

TLBProbe Command 
This command is used to check the TLB for an entry that matches a supplied virtual address, and 
return an index location or an error code.  

The TLBProbe command operation can still be performed when MMU is disabled (when the T bit is 
0 in the PID register). 

TLBProbe Usage 
• The V[17:0] field of the TLBPD0 and TLBPD1 register pair contains the virtual address for which 

the TLB is to be searched. The A[7:0] field of the TLBPD0 and TLBPD1 register pair contains the 
address space identifier (ASID) to be used for the search. All other bits in the TLBPD0 and TLBPD1 
register pair are ignored. 

 As a result of the command, the TLBIndex register is loaded with the index location at which 
the matching entry is located. 

• If no matching entry is found in the TLB, the TLBIndex will be loaded with error flag E set and 
the Index field containing error code 0x0, (full value returned is 0x8000.0000). 

• If more than one matching entry is found in the TLB, the TLBIndex register will be loaded with 
error flag E set and the Index field containing error code 0x1. The full value returned is 
0x8000.0001.  

• A matching entry is defined as a TLB entry for which: 

 The valid (V) bit is set true, and 

 The virtual address field V[17:0] matches exactly, and 

 Either the ASID field A[7:0] matches exactly, or the global (G) bit is set  

 No other information is used for matching - User/Kernel mode permissions and flag bits are 
not considered. The V bit in TLBPD0 is also ignored.  

Process Identity Register, PID 
The Process Identity register (PID) contains privilege bits that control permissions that can be 
optionally extended to a user mode task, an address space identifier (ASID) field used by the memory 
management system and compatibility mode bits. This is a fully serializing register. 

31                        7 6 5 4 3 2 1 0 

T Reserved P[7:0] 

The Reserved field is set to zero. The following fields are described in more detail: 

• T, Global TLB Enable 

• P[7:0], Address Space Identifier ASID 
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T, Global TLB Enable 
The Global TLB Enable bit is used to enable or disable the MMU. When set to 0 the MMU is 
disabled, which means that all logical addresses are mapped directly to physical addresses. The MMU 
needs to be enabled (Global TLB Enable bit set to 1) in order for memory protection and cacheability 
to work on individual pages. Note that the Data Uncached region is always active even when the 
MMU is disabled. This field is set to 0x0 on reset. 

P[7:0], Address Space Identifier ASID 
The 8-bit Address Space Identifier (ASID) is set by the Operating System as the ASID of the 
currently executing process. The ASID is used by the Operating System and memory management 
hardware to allow physical pages to be mapped into many separate virtual address spaces. This field 
is set to 0x0 on reset. 

Typically each independent task would have its own ASID value. This scheme is used to avoid the 
need to reload address mappings when context switching between tasks. The ASID in this register is 
checked against the ASID portion of a Page Descriptor (PD) unless the global bit, T, is set. Since 
there may be more than 256 tasks running at any one time, the Operating System manages the 
allocation and use of ASIDs. 

NOTE The ASID is checked in both user and kernel mode - allowing the OS to run tasks in either mode. 

Writes to the PID register should be made either from code running in un-translated memory or from 
code running from a page with the Global bit set (ASID is ignored). This ensures that the code page 
being accessed continues to be visible after the ASID is changed.  

The processor ensures that the ASID update takes effect immediately after the SR instruction making 
the change. 

NOTE A machine check exception causes the Global TLB enable to be cleared (set to zero). 

 

Scratch Data Register, SCRATCH_DATA0 
The SCRATCH_DATA0 auxiliary register is a generic 32-bit scratch register that can be used in kernel 
mode only to store any data. The OS can for example use this register to hold the base address of the 
first level page descriptor table in order to speed up page table access. The default on reset is 0x0 and 
writes to the SCRATCH_DATA0 are non-serializing. 
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Chapter 4 —  Memory Management Exceptions 

In this section: 
• Exceptions to Support Memory Management Functions 

• Flowchart for TLB Lookups 



Memory Management Exceptions Exceptions to Support Memory Management Functions 

ARC® 700 Memory Management Unit Reference      31 

Exceptions to Support Memory Management 
Functions 
A number of exceptions are provided to support memory management functions: 

• Instruction or Data TLB Miss  

 TLB lookup cannot locate an entry for the supplied virtual address 

• TLB error  

 >1 matching entry during TLB lookup 

• Protection violation 

 The access being attempted was not enabled by the protection flags in the TLB entry 

• Unaligned access 

An access was performed that violated the alignment constraints of the machine - accesses must be 
aligned to the size of the transaction. 

For more information on the MMU related exceptions refer to the ARCompact™ Programmer's 
Reference. 

The flow diagram (Figure 4) shows how exception conditions are detected. 
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Flowchart for TLB Lookups 
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Figure 4 TLB Lookup Flowchart 
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Chapter 5 —  Physical Address Calculation 

In this section: 
• Calculation Process 
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Calculation Process 
When the Memory Management Unit (MMU) is enabled, physical addresses are calculated using the 
following inputs: 

• Virtual address from the access (32 bits) 

• Address space identifier (ASID) from the PID register 

• TLB contents  

 

 MMU 
Translation Lookaside Buffer (TLB) or 
passthrough for untranslated regions 

Virtual address 

Virtual page number Page offset ASID 

Address space 
identifier 

Physical page number Page offset 

Cache mode for 
access 

Memory 
control 
signals 

 
Figure 5 Physical Address Calculation 

The outputs are as follows: 

• The lower 13 bits (the page offset) come directly from the lower 13 bits of the virtual address 
supplied. 

• The remaining bits (19) come directly from the Physical Page Number field P18:0 in the matching 
TLB entry 

The memory control signals are as follows: 

• Cached/Uncached access 

 Determined from TLB entry and cache mode from original access. 

 Cached access permitted if the access requested a cached access and the TLB entry permits it. 
All other accesses are uncached - when either the instruction or the TLB entry specifies an 
uncached access. 
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Chapter 6 —  Memory Configuration Examples 

In this section: 
• Example Page Table Operations 

• Example Arrangement 

• Operating System Private Space 

• User Mode Tasks 

• Kernel Mode Tasks 

• Shared Memory Regions 
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Example Page Table Operations 
Many modern operating systems implement demand-paged virtual memory systems. This method of 
managing memory enables a straightforward programming interface for application developers, and 
allows the operating system (OS) to dynamically manage the physical memory resources of the 
machine, and implement controls and protections for memory used by and shared between individual 
processes. 

Properties of demand paged virtual memory systems include: 

• Sharing  

 The physical memory attached to the machine can be shared between multiple processes 
simultaneously 

 More memory can be allocated than actually exists as physical memory in the machine, if 
disk storage is available 

 Areas of memory can be shared between two or more processes to allow for inter-process 
communications and data transfer, with process-specific protections 

• Protection 

 Each process appears to have its own private address space 

 For any given process: Memory owned by the process is protected from accesses by other 
processes, and memory owned by other processes is protected from access by this process 

• Translation 

 Address Translation maps program (virtual) address to hardware (physical) addresses 

 Infrequently used areas of memory can be swapped to disk until required 

To implement common demand-paged virtual memory systems, certain hardware resources are 
required from the host processor - separate execution modes for user processes and the OS kernel, and 
a memory management unit providing address translation and memory protection. 

All memory in the system is split into a number of regions, known as pages. Depending on the 
system, these pages can be of fixed or variable size. In the ARC 700 processor pages are 8 KB. 

The operating system keeps track of the memory used by each process using a set of page tables. 
Each page in the address map of each process requires a Page Table Entry (PTE). Each process has 
its own address space - either the OS will support this through a single page table containing 
mappings for all address spaces, or by using a separate page table for each process.  

The following sections provide further examples on page table operations: 

• Memory Management Unit (MMU) 

• Page Table Operations 

Memory Management Unit (MMU) 
The Memory Management Unit (MMU) provides hardware support and acceleration for address 
translation and protection. In effect the MMU acts as a cache into the page table - using a mechanism 
known as the Translation Lookaside Buffer (TLB). Like an instruction or data cache, the TLB is 
maintained to keep a subset of frequently used page table entries within the MMU, in order to allow 
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for address translation and protection checks to be performed without delays. When a memory 
location is accessed for which the page table entry is not held in the TLB, the page table must be 
searched and the appropriate entry loaded - or if no matching page is found, an error condition 
generated. 

In some systems the mechanism used to update the set of page table entries held in the TLB is 
provided by the MMU hardware. Other systems, including the ARC 700 processor, use a ‘software-
managed’ TLB, where an exception handler is used to update the TLB entries from the page table. 
This approach enables a simpler hardware design, and greater flexibility for TLB management by 
software. 

Page Table Operations 
These sections give an illustration of MMU functions to support basic page table operations in a 
typical operating system. It is not intended to be an exhaustive list of all possible operations. Code is 
provided for illustrative purposes only. 

• Add page table entry 

• Remove page table entry 

• Change page table entry 

• TLB miss handlers 

• Privilege Violation handlers 

Add page table entry 
When a new page table entry is added, no MMU operations are required. When a memory access is 
attempted to the new page, an exception will result and the page will be located and loaded by the 
TLB miss handler. 

Remove page table entry 
When a page table entry is removed, it is necessary to ensure that the MMU does not still contain the 
page in question.  

The following function searches the MMU for a given address and removes it when present: 
// mmu_shootdown_page: 

// 

//    Remove page from MMU from address and ASID  

// 

// Address : virtual address 

// ASID : address space identifier (0-255) 

// 

void mmu_shootdown_page(long address, long asid) { 

long result; 

     

    // Load TLBPD0 with address and ASID 

    //  

    _sr((address & 0x7fffe000) + (asid & 0xff),TLBPD0); 

 

    // Check for address in MMU with TLBProbe command 

    // 

    _sr(TLBProbe,TLBCommand); 

 

    // Get result of probe 

    // 

    result = _lr(TLBIndex); 
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    // If a matching entry exists (top bit clear), remove it 

    //  

    //  - an update to the TLB will cause the uTLBs to be cleared 

    //    thus ensuring the entry is cleared from there also. 

    // 

    if (!(result && 0x80000000)) { 

 

        // Location of entry to be removed is already in TLBIndex 

        // 

        _sr(0,TLBPD0); 

        _sr(0,TLBPD1); 

        _sr(TLBWrite,TLBCommand); 

    } 

} 

 

Change page table entry 
When a page table entry is changed, it is necessary to ensure that the MMU contains the updated 
information.  

The following function searches the MMU for a given page table entry and updates it if present. The 
OS could alternatively choose to remove an entry from the TLB after a change, thus forcing a reload 
by the TLB miss handler on the next access to the page. 
// mmu_update_page: 

// 

//    Find page and update it if present. 

// 

// vaddress : virtual address 

// asid     : address space identifier (0-255) 

// global   : Global flag (0/1) 

// paddress : physical address 

// flags    : user and kernel flags (7 bits) 

//  

void mmu_update_page(long vaddress, long asid,  

                     long global, long paddress, long flags) { 

long result; 

    

    // Check to see if page is present in the MMU 

    //  

    // Load TLBPD0 with address and ASID 

    //  

    _sr((vaddress & 0x7fffe000) + (asid & 0xff),TLBPD0); 

 

    // Check for address in MMU with TLBProbe command 

    // 

    _sr(TLBProbe,TLBCommand); 

 

    // Get result of probe 

    // 

    result = _lr(TLBIndex); 

     

    // If a matching entry exists (top bit clear), reload it 

    //  

    //  - an update to the TLB will cause the uTLBs to be cleared 

    //    thus ensuring the entry is cleared from there also. 

    // 

    if (!(result && 0x80000000)) { 
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        // Location of entry to be reloaded is already in TLBIndex 

        // 

        // Create TLBPD0 

        // 

        _sr(   (vaddress & 0x7fffe000) 

             + (asid & 0xff)  

             + ((global & 1)<<8) 

             + (1 << 10), TLBPD0); 

 

        // Create TLBPD1 

        // 

        _sr(   (paddress & 0xffffe000) 

             + ((flags & 0x7f)<<2), TLBPD1); 

 

        // Load entry into TLB 

        //  

        _sr(TLBWrite,TLBCommand); 

         

    } 

} 

 

TLB miss handlers 
A TLB miss handler is a performance-critical part of a software-managed MMU system, and would 
typically be written in assembler for maximum speed. The exact logic for the code depends on how 
the page tables are constructed in the particular operating system, but it is possible to describe the 
sequence of events required. The ARC 700 processor provides two vectors for TLB miss exceptions 
to allow for separate handling of TLB misses from instruction fetches and those from data accesses. 
However, these two vectors can be directed to the same handler if required. 

The sequence of events for a TLB miss handler is illustrated in these steps: 

• Save temp variables 

• Get Page Table base address - for speed, the OS may choose to store it in SCRATCH_DATA0 

• Get fault address from EFA register 

• Search page table for the faulting address, in the current address space context - logic of the 
search is implementation-specific, dependent on the page table arrangement 

• Based on the page table search: 

 If the requested page is not mapped into the address space of the process (i.e. it is not found 
in the page table), go to the page fault handler to deal with the error 

 If the requested page is mapped into the address space of the process, but the page is not 
loaded into physical memory, go to the page fault handler 

 If a mapping for the requested page is present in the page table, and the page itself is present 
in physical memory, continue to load the TLB entry 

• At this point, the OS may choose to update the page table in order to keep track of which pages 
have been accessed, or to maintain other statistics. 

• The TLB entry is constructed from the following data, extracted from the Page Table Entry: 

 Virtual Page Number 
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 Physical Page Number 

 Address Space Identifier (ASID) 

 User mode permission bits 

 Kernel mode permission bits 

 Valid bit 

 Global bit 

• The two halves of TLB entry are written into TLBPD0 and TLBPD1 

• Execute TLBGetIndex command to get an index location in which to place the TLB entry. The 
command places an index value into TLBIndex, based on the data in TLBPD0 and TLBPD1 

• Execute TLBLoad command to load the TLB entry in TLBPD0 and TLBPD1 at the location now 
in TLBIndex. 

• Restore temp variables 

• Exit 

 

Privilege Violation handlers 
In addition to the TLB miss handler, an operating system using the MMU must also provide handlers 
for privilege violation exceptions. These exceptions will occur when a program accesses a translated 
memory location in a way that is not allowed by the permission flags of the page, for example: 

• Write attempt into read-only memory 

• Jump into memory without execute permission 

In most cases, a privilege violation in a user process would result in the process being terminated. 
However, there are some cases where privilege violation exceptions are used to assist with virtual 
memory operations. 

In a demand-paged virtual memory system, pages are swapped between disk and physical memory. It 
is useful to determine whether a page in physical memory has become dirty, i.e. has been written 
since it was created or loaded from disk.  

TLB entries in the ARC 700 MMU are never altered by the hardware once loaded - as a result, the 
MMU cannot set a flag to indicate that a write has taken place to a page.  

In order to track dirty pages, a freshly created or loaded page is given read-only permissions in the 
TLB by the operating system. When the page is written to by the user program, an exception will be 
taken, at which point the OS can mark the page table entry as dirty. The TLB entry can be re-loaded 
with the proper read/write permissions and the program allowed to resume. 

Example Arrangement 
This is an example of the following arrangement: 

• An operating system featuring a process model such as Linux 

• The OS page tables, interrupt and exception handlers are located in un-translated memory above 
0x80000000 
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• Three tasks - A, B and C  

 Two running in user mode (A and B) 

 One running in kernel mode (C) 

• Tasks A and C share set of library functions 

• Task C sends data to Task B via a shared memory block, to which only Task C has write access. 

• Each task has its own stack and heap 

• Each task is located in the same space in virtual memory (and hence the memory of other tasks is 
not visible) 

• The operating system has exclusive access to memory mapped IO, and to its own stack and 
memory space - these are also located in un-translated memory about 0x80000000. 

The diagrams on the following pages use the following shorthand for describing permissions (access 
mode flags are not shown): 

• R,W,E: Kernel mode read/write/execute 

• r,w,e: User mode read/write/execute 

• g:  Global access (ASID ignore) 

Linux has the following rules for setting permissions for memory regions: 

• Read access implies that execute access is granted 

• Write access implies that read access is granted  

 Implying that execute access is also granted 

This example assumes that the kernel mode permissions are set identically to the user mode 
permissions. If a debugging component of the operating system needs to write to code space, it is 
assumed that this component will need to set the appropriate write permission. An operating system 
designed for high reliability and availability would be likely to use the permission bits in a more 
sophisticated manner. 

Operating System Private Space 
In this example the OS has its own data stored in un-translated memory above 0x80000000, visible at 
all times when in kernel mode but invisible to user mode tasks: 
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 Untranslated memory 

  

            Vector table 

            Kernel heap 

            Interrupt stack 

            Kernel 
mallocs 

            Kernel code 

         IO mappings   

Translated memory 

Uncached 

Cached 

 
Figure 6 OS Private Space Memory Map 

The pages are mapped into the address space at all times and the permissions prevent access from 
user mode tasks. Hence a user mode read, write or execute from these pages would be a protection 
violation and the appropriate exception generated. Clearly debugging systems or tasks would need to 
enable reads and writes to code space of user mode tasks in order to display disassemblies and to set 
and remove breakpoints.  

When the processor is in kernel mode and a valid ASID is set, the address space will include not only 
the un-translated memory described above, but also the pages with matching ASID values. For 
example, if the kernel were entered whilst running task B, the memory space would be as follows: 
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   Untranslated memory   

            Vector table   

            Kernel heap       

               Interrupt stack   

             Kernel    

    

           Kernel code mallocs       

             IO mappings       

Translated memory (Task B)       

  RW - r - e -        Task B code       

    

  RW - rwe -        Task B stack   
    

    

    

  RW - re -        Shared data       
             (receiver)       

Uncached   

Cached   

 
Figure 7 Task B Memory Map 

In this example, kernel mode read/write access permissions are set on user task data areas in order to 
allow OS calls using kernel mode to take data from, and return data to the calling task’s memory 
space. 
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User Mode Tasks 
Two user-mode tasks are in the system - each has its own code and data area - mapped in the same 
location in the memory map in each case to prevent unwanted interaction between tasks. 

 

Translated memory (Task A) 

R-Er-e-     Task A code 

R-Er-e-      Shared lib 

 

RWErwe-     Task A Stack 

            Task A heap 

    

 

Translated memory (Task B) 

 R-Er-e-    Task B code 

RWErwe-     Task B stack 

            Task B heap 

     

 

R-Er-e-     Shared data 
             (receiver) 

 
             Task C heap 
 

 

 
Figure 8 Task A and B Memory Maps 

The un-translated memory region is not available to user mode tasks. Any access would cause a 
protection-violation exception, and hence this space not shown in the preceding memory map 
diagrams. 
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Kernel Mode Tasks 
Some operating systems allow users to supply tasks (such as device drivers) that are to be run in 
kernel mode. 

 

Translated memory (Task C) 

 R-Er-e-    Task C code 

 R-Er-e-    Shared lib 

 

 RWErwe-    Task C stack 

            Task C heap 

 

 R-Erwe-    Shared data 
            (sender) 

       

Untranslated memory 

            Vector table 

            Kernel heap 

            Interrupt stack 

            Kernel mallocs 
            Kernel code 

            IO mappings Uncached 

Cached 

 
Figure 9 Task C Memory Map 

In this example Task C is run in kernel mode. As such, it has access to its own memory spaces plus 
the un-translated memory space - which includes the memory mapped IO space.  

Clearly the OS code and data areas in un-translated memory are not protected from erroneous writes 
from Task. 

NOTE A malicious task running in kernel mode would have sufficient privileges to take over the entire 
system - hence the OS should only run trusted tasks or drivers in kernel mode 
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Shared Memory Regions 
This example has two regions of memory shared between tasks - a shared data area and a shared 
library. 

 Untranslated memory 

      Vector Table 

         Kernel heap 

      Interrupt stack 

       Kernel mallocs 

         Kernel code 

        IO mappings 

Translated memory 
(Task C) 

 R-Er-e-  Task C code 

 R-Er-e-  Shared lib 

 RWErwe- Task C stack 

          Task C heap 

 R-Erwe-  Shared data 
            (sender) 

          Task C heap 
 

Translated memory 
(Task A) 

 R-Er-e- Task A code 

 R-Er-e-   Shared lib 

 RWErwe- Task A stack 

         Task A heap 

 

Translated memory 
(Task B) 

 R-Er-e-  Task B code 

 RWErwe- Task B stack 

         Task B heap 

 

 R-Er-e-  Shared data 
          (receiver) 

          Task C heap 

Uncached 

Cached 

 
Figure 10 Shared Memory Regions 

Since these shared areas of memory are shared between some tasks but not all tasks, they are not set 
to be globally accessible. Instead, multiple page table entries are created mapping to the same 
physical pages for the address spaces of each task requiring access. 

The use of separate page table entries allows the access permissions for task to be set individually - 
allowing one task read-write access, and other tasks read-only access, for example. 

In this case, task B only has read access to the shared data block, whereas task C (running in kernel 
mode) has both read and write access. 

NOTE There is a restriction on how page mapping can be done for shared pages (see Restriction for 
Shared Pages). 
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