ARC® 700 IP Library
ARC® 700 Memory Management Unit

Reference

5127-012

ARC® 700 Memory Management Unit Reference

ARC® International

European Headquarters North American Headquarters
ARC International, 3590 N. First Street, Suite 200
Verulam Point, San Jose, CA 95134 USA
Station Way, Tel. +1 408.437.3400

St Albans, Herts, AL1 5HE, UK Fax +1 408.437.3401
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

www.arc.com

ARC Confidential Information
© 2004-2008 ARC International (Unpublished). Atilts reserved.

Notice

This document, material and/or software contaimgidential and proprietary information of ARC Intational and is protected by
copyright, trade secret, and other state, fedaral,international laws, and may be embodied inntsiiesued or pending. Its receipt or
possession does not convey any rights to use,depeg disclose its contents, or to manufactursethranything it may describe. Reverse
engineering is prohibited, and reproduction, disgte, or use without specific written authorizatarARC International is strictly
forbidden. ARC and the ARC logotype are trademafl&RC International.

The product described in this manual is licensetlsnld, and may be used only in accordance wittdims of a License Agreement
applicable to it. Use without a License Agreeméntjolation of the License Agreement, or withoatymg the license fee is unlawful.

Every effort is made to make this manual as acewaatpossible. However, ARC International shaletraw liability or responsibility to

any person or entity with respect to any liabilloss, or damage caused or alleged to be causstigior indirectly by this manual,
including but not limited to any interruption ofrgiee, loss of business or anticipated profits, alhdirect, indirect, and consequential
damages resulting from the use of this manual. AR€rnational's entire warranty and liability irspect of use of the product are set forth
in the License Agreement.

ARC International reserves the right to changesthexifications and characteristics of the prodestdbed in this manual, from time to
time, without notice to users. For current inforimaton changes to the product, users should reatréadme" and/or "release notes" that
are contained in the distribution media. Use ofgfaluct is subject to the warranty provisions adred in the License Agreement.

Licensee acknowledges that ARC International isothieer of all Intellectual Property rights in subbcuments and will ensure that an
appropriate notice to that effect appears on aludeents used by Licensee incorporating all or pogtiof this Documentation.

The manual may only be disclosed by Licensee a®rhtbelow.

. Manuals marked "ARC Confidential & Proprietary" mag/ provided to Licensee's subcontractors under NDiAe manual may not
be provided to any other third parties, includingmmfacturers. Examples--source code software ranuger guide, documentation.

. Manuals marked "ARC Confidential* may be providedtibcontractors or manufacturers for use in Lieéraroducts. Examples--
product presentations, masks, non-RTL or non-sdiorceat.

. Manuals marked "Publicly Available" may be incomted into Licensee's documentation with appropARE permission.
Examples--presentations and documentation thabtlembody confidential or proprietary information.

The ARCompact instruction set architecture proaeard the ARChitect configuration tool are coveogdbne or more of the following
U.S. and international patents: U.S. Patent NA§:&547, 6,560,754, 6,718,504 and 6,848,074; TaRaent Nos. 155749, 169646, and
176853; and Chinese Patent Nos. ZL 00808459.9 @8@8260.2. U.S., and international patents pending.

U.S. Government Restricted Rights Legend

Use, duplication or disclosure by the U.S. Goveminie subject to restrictions as set forth in FAR227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Cartgr Software clause at DFARS 252.227-7013 and/emnilar or successor clauses in
the FAR, or the DOD or NASA FAR Supplement.

CONTRACTOR/MANUFACTURER IS ARC International I. Rac., 3590 N. First Street, Suite 200, San Joge9&134.

Trademark Acknowledgments

ARCangel, ARChitect, ARCompact, ARCtangent, HiglC€#, High C++, the MQX Embedded logo, RTCS, and pt@g are trademarks
of ARC International. ARC, the ARC logo, High C, Mivare, MQX, MQX Embedded and VTOC are registemdin ARC International.
All other trademarks are the property of their extjwe owners.

5127-012 April 2008

http://www.arc.com/

Contents

Chapter 1 — MMU Introduction

Overview

MMU Features

Memory Model

Translation Lookaside Buffers
Programming Model

Chapter 2 — Page Table Descriptor
Page Tables
Page Descriptor
Restrictions of Page Mapping
Restriction for Shared Pages
Large Instruction Cache Aliasing
Restriction for Pages Mapped to CCMs
Restriction for Pages Using Large Caches
Page Descriptor Format
V[17:0] - Virtual Page Number
V - Valid
G - Global
A[7:0] - Address Space Identifier ASID
P[18:0] - Physical Page Number
Rk, Wk, Ek - Kernel Mode Permission Bits
Ry, Wy, Ey - User Mode Permission Bits
F¢ - Cached/Uncached Flag
TLB Indices Arrangement
MMU Build Configuration Register, MMU_BUILD
Data Uncached Build Configuration Register, DATA_UNCACHED

Chapter 3 — Privileged Auxiliary Registers for TLB A
Maintenance and Control
TLB Page Descriptor Registers, TLBPDO and TLBPD1
TLB Index Register, TLBIndex
Index, Read/Write
E, Error Code, Read only
TLB Command Register, TLBCommand
TLBWrite Command
TLBRead Command

ARC® 700 Memory Management Unit Reference

Z

© © 0o 0

10

12

13
13
14
14
15
15
16
16
17
17
17
17
18
18
19
19
20
21
22

ccess?23
24
24
25
25
25
26
26
27

Contents

TLBGetIndex Command 27
TLBProbe Command 28
Process Identity Register, PID 28
T, Global TLB Enable 29
P[7:0], Address Space Identifier ASID 29
Scratch Data Register, SCRATCH_DATAO 29
Chapter 4 — Memory Management Exceptions 30
Exceptions to Support Memory Management Functions 31
Flowchart for TLB Lookups 32
Chapter 5 — Physical Address Calculation 33
Calculation Process 34
Chapter 6 — Memory Configuration Examples 35
Example Page Table Operations 36
Memory Management Unit (MMU) 36
Page Table Operations 37
Example Arrangement 40
Operating System Private Space 41
User Mode Tasks 44
Kernel Mode Tasks 45
Shared Memory Regions 46

iv ARC® 700 Memory Management Unit Reference

List of Figures

Figure 1 Architecturally Defined Address Mappingccoeeeeeuuuinieeeeieeeeeee e 9
FIGUIE 2 IMIMU STIUCLUIE ...uveei ettt e e et e e e e e e e e e et e e e e e e e eaeran e as 10
Figure 3 Fully-Associative and Set-Associative TLB INdICES..........ccovvvviiiiiiiiiiiieeieeeeii, 21
Figure 4 TLB LOOKUP FIOWCHhArt ..o 32
Figure 5 Physical Address CalCulationoouuuiiiiii oo 34
Figure 6 OS Private Space Memory Mapcccuuuuiiiiiieeiiieeeiie e 42
Figure 7 Task B MemOrY Mapcoooeiiiiiiiiie e e e e e e 43
Figure 8 Task A and B MemOTrY MaScooeeiiiiiiiiiiie et 44
Figure 9 Task C MEMOIY IMAPcooiiiiiiiiie e e e e e e e e e e e e as 45
Figure 10 Shared Memory REGIONSciiii it 46

ARC® 700 Memory Management Unit Reference %

List of Tables

Table 1 ARC 700 Set-Associative TLB INAICES........ii i 20
Table 2 Special Purpose Registers for TLB Controlccovveiiiiiiiiiiieiiiii e 24
Table 3 TLBIndex Addresses and Error COUEScoovvvvvieiiiieeeee e 25
Table 4 TLB Command Register Command LiSt..........ccooveiiiiiiiiiiriiie e 26

Vi ARC® 700 Memory Management Unit Reference

Chapter 1 — MMU Introduction

In this section:

Overview

Memory Model
MMU Features

Programming Model

ARC® 700 Memory Management Unit Reference

Overview

MMU Introduction

Overview
The following aspects of the ARC® 700 Memory Management Unit (MMU) areredy

ARC 700 Memory Management Options

ARC 700 Translation Lookaside Buffer (TLB)

ARC 700 Page Descriptors
Memory Mapping and Operating Modes

Memory Management Related Exceptions

Writing ARC 700 TLB Miss Exception Handlers

MMU Features

The MMU features are as follows:

Software managed

[0 Page Table walking, TLB entry loading
[0 Marking of valid pages

[0 TLB entry removal

Hardwaresuggestedeplacement policy

[0 The software can either rely on the hardware to supply a location for neegeot use its

own algorithm

Unified address space for instruction and data

Common address space for kernel and user modes

8-bit address space identifier (ASID)
4Gb physical addresses address space
2Gb translated memory per address space

Fixed 8k page size

Separate read/write/execute flags for user and kernel modes

Cache and memory system controls

Global access control

ARC® 700 Memory Management Unit Reference

MMU Introduction Memory Model

Memory Model

The ARC 700 processor supports virtual memory addressing if the optional Meranagiment
Unit (MMU) is present. If the MMU is not present or a MMU is presentiddtsabled, all logical
addresses are mapped directly to physical addresses. By default, the Migabled after reset.
Note that the Data Uncached Region is always active even if the Miliskilsled.

The optional Memory Management Unit features a Translation Lookasidler BUEB) for address
translation and protection of 8Kb memory pages, and fixed mappings of un-translated/nihe
upper half of the un-translated memory section is uncached (for 10 usekedodér half of the un-
translated memory section is cached (for operating system kernel).

The 32-bit ARC 700 architecture features a 32-bit physical address spac&2abi artual address
space extended by an 8-bit address space identifier (ASID).

With the optional MMU in place, the ARC 700 architecture defines a comduness space for both
instruction and data accesses. The memory translation and protection ggstdresarranged to
provide separate non-overlapping protected regions of memory for instructiafat access within
a common address space.

The ARC 700 address space is unified - separate address spaces for cotke anednda permitted.

The programming interface to the Memory Management Unit has been designeddedemdent of
the configuration of the TLB - in terms of the associativity or number ofsnt

NOTE Dirty pages are managed by an operating system using the protection bits. A ‘clean’ page will be
marked as read-only. On the first write, the ‘real’ permissions will be restored and the page marked
dirty. A similar scheme for reads will also be used to identify ‘used’ pages.

Logical Address Space Physical Address Space

—>
Uncache Untranslated
(kernel only)
Cache i
Physical memory
Translated
(user/kernel)

Figure 1 Architecturally Defined Address Mapping

Translation Lookaside Buffers

To provide fast translation from virtual to physica&mory the MMU contains Translation Look-
aside Buffers (TLBs). The MMU can be thought obasvo level cache for page descriptors: The

ARC® 700 Memory Management Unit Reference 9

Programming Model MMU Introduction

MITLB and uDTLB at level one, and the main (or JoirLB at level two. The pITLB and uDTLB
contain copies of the content in the Joint TLB.

In addition to providing address translation, thd3Tsystem also provides cache control and memory
protection features for individual pages.

ARC 700 Instruction ARC 700 Integer
Fetch Pipeline Pipeline

MW ARC 700 DMP
I-Cache

D-Cache
" RAMS " ->

JTLB PD 0
RAM

JTLB PD 1 MMU uDTLB

RAM ' ' ‘ '

Figure 2 MMU Structure
The ARC 700 implementation features a system cardid) as follows:

 The nITLB and uDTLB are fully associative and plegdlly located alongside the instruction
cache and data cache, respectively, where thegrpethe virtual and physical address
translation. The pITLB and uDTLB are hardware maagon a pITLB (or uDTLB) page miss
the hardware fetches the missing page from the fiaih

» The Main Translation Lookaside Buffer (TLB) consisf two-way set associative Joint
Translation Lookaside Buffers (JTLB), with 256 éedt The Joint TLB is software managed. On
a joint TLB page miss the operating system hastichfthe missing page descriptor from memory
and store it into the Joint TLB. No part of the MMiids direct access to the main memory. The
Joint TLB is filled by software through an auxilyaregister interface. The instruction that caused
the UTLB miss is retried while the JTLB is interabgd.

Programming Model

The programming interface consists of three mampmnents:

 Page table descriptor

10 ARC® 700 Memory Management Unit Reference

MMU Introduction

Programming Model

« Privileged auxiliary registers for TLB access

« Memory Management Exceptions

+ Physical Address Calculation

SomeMemory Configuration Exampleare also provided.

ARC® 700 Memory Management Unit Reference

11

Chapter 2 — Page Table Descriptor

In this section:

12

Page Tables

Page Descriptor
Restrictions of Page Mapping

Page Descriptor Format

TLB Indices Arrangement

MMU Build Configuration Register, MMU BUILD

Data Uncached Build Configuration Register, DATA CACHED

ARC® 700 Memory Management Unit Reference

Page Table Descriptor Page Tables

Page Tables

Operating Systems that utilize memory managemadtd t;mimplement both virtual memory and
address translation must maintain a data struthatedescribes how pages from the virtual memory
space of each process relate to pages in bothgathysémory and external storage - such as a disk-
based swap file. This data structure is calledPthge Table.

The Translation Lookaside Buffer (TLB) is providasla cache to store the most recently used entries
from the Page Table. Loading of entries into th&Ttom the Page Table in the ARC 700

architecture is performed under the control ofwgaft - this is generally referred tosaftware page
table walking

Since the loading of TLB entries is under the calntf software, the structure of the page tableois
within the scope of this information. However itispected, but not required, that a multi-levelgpag
table structure will be implemented, with a comptred the lowest level (leaf) entries being ARC
700 page descriptors, in the format described Iatdris section.

A second component of this structure would typicbk a set of flags for the page, maintained by the
OS for its own purposes.

Page Descriptor

Memory mapping is performed in blocks of 8Kb padgédse address space is unified (code and data
share the same address space).

In order to map any page of physical memory in®wintual address space of a process, a page
descriptor is required. This page descriptor isestdn the operating systgumage tabldn main
memory, and the most recently used page descrigterkept in the on-chip TLB (and in the pITLB
and pDTLB) for fast access.

The page descriptor is an 8-byte structure thatipe the following for each page in use by the
virtual memory system:

* Inwhich virtual address space does it appear?

[0 The ARC 700 processor allows for 256 separatealidddress spaces using an 8-bit address
space identifier (ASID).

[0 If a page of physical memory is to appear in mbesntone virtual address space, a separate
page table entry is usually required for each efatidress spaces in which the page appears.
The only exception to this is when the page appeal address spaces - this is a globally
accessible page.

* Is it marked aglobal - available in all virtual address spaces?
» lts location in the virtual address space?
* The page in physical memory to which it is mapped

O Or the page to be used from a swap file on diikafpage is not presently in physical
memory

* The access permissions

ARC® 700 Memory Management Unit Reference 13

Restrictions of Page Mapping Page Table Descriptor

O The ARC 700 processor allows a page to have separatl, write and execute permissions
to for user and kernel mode tasks.

[0 This feature is provided to allow operating systavith high-reliability requirements to
protect pages against unexpected accesses fronngmtiasks and the operating system
itself.

» Whether the page table entry is valid

O Invalid entries will not be considered by the MMahd will be evicted before a valid entry
on a TLB miss

» How the memory hierarchy should perform accessdstpage

O Cache parameters

Restrictions of Page Mapping

The general rule is that any virtual page can bpp®ad to any physical page as long as it is aligoed
the page size of 8Kb. However, there are threeicgshs to this rule. The first one relates torsita
pages, the second restriction relates to Closelpféd Memories (CCMs) and the third relates to
large cache sizes.

» Restriction for Shared Pages

e Restriction for Pages Mapped to CCMs

* Restriction for Pages Using Large Caches

Restriction for Shared Pages

When two or more virtual pages map to the sameigalysage, then this physical page is called a
shared pageShared pages can suffer from a problem calfethe aliasingthis is when a shared
physical page is held in more than one virtual egglin the cache RAMs. Cache aliasing is
undesirable as it is inefficient to have to che@ngncache RAM addresses to find a cache line.

Cache aliasing is avoided by requiring the shaeggego be set to the same size as the largest cache
way size in the design, but never to less thastéwedard page size of 8Kb. The benefit of this
restriction is that the part of the virtual addregsch is applied to the cache RAMs is always the
same as the same part of the physical addresseQoestly, any virtual address can only be mapped
to one single physical address.

In ARC 700 processor the cache way sizes are asvil
» 32Kb for the 2-way 64Kb instruction cache

» 16Kb for the 2-way 32Kb instruction cache

» 16Kb for the 4-way 64Kb data cache

» 8Kb or less for all other ARC 700 cache configuras

For example, assuming the design contains a 64#thuction cache and a 64Kb data cache.
According to the list above the cache way sizekI8for the instruction cache and 16Kb for the data
cache. The largest of these two is the way sizhedinstruction cache. Consequently shared pages
must be 32Kb. Larger pages are constructed byidgfgeveral contiguous 8Kb pages. In this case
the following page mapping could be performed:

14 ARC® 700 Memory Management Unit Reference

Page Table Descriptor Restrictions of Page Mapping

» Virtual page 0x10000 is mapped to physical page83080 (page 1)
» Virtual page 0x12000 is mapped to physical pag®082 (page 2)
» Virtual page 0x14000 is mapped to physical page2082 (page 3)
» Virtual page 0x16000 is mapped to physical pagel082 (page 4)

NOTE There are four 8Kb pages in the list above to form the shared 32Kb page. Also note that both the
virtual page 0x10000 and the physical page 0x18000 are aligned to the size of the shared page (32
Kb)

Large Instruction Cache Aliasing

The ARC 700 MMU has a fixed page size of 8K bytisscaches are physically tagged and virtually
indexed, with Instruction cache and Data cachealfrespectively at 2-way and 4-way. As cache size
increase (Instruction cache beyond 16 KB and Dathe beyond 32KB), the virtual index used in
cache access overlaps with the lower bits of testated tag.

Therefore, the virtual index has the potentialadanger be guaranteed to be identical to the phi/si
index. This ambiguity could lead to the classicheaaliasing problem. However, for large cache
configurations, the cache tag field is extendediamdostly transparent to software.

Changes occur during in the low level direct RAMess by the processor. In particular, the TAG
field in the IC_TAG (0x1B) auxiliary register is txded, when necessary, to hold the physical tag.
In cases of large caches, this means some of ghehorder bits of the INDEX field of these two
registers are lost. However, the same info cartieved from the IC_RAM_ADDR (0x1A)

auxiliary register.

Kernel code dealing with cache invalidating, caftbhghing and line locking will have to deal with
these differences. In particular, when writinghe tegisters IC_LIL (0x13) and IC_IVIL (0x19), the
physical address has bits 4:0 replaced by bits316f the corresponding virtual address.

Debug operations using IC_RAM_ADDR (0x1A) are afée When writing to IC_RAM_ADDR
(Ox1A) in cache controlled mode, the physical adgligas bits 1:0 replaced by bits 14:13 of the
corresponding virtual address.

Restriction for Pages Mapped to CCMs

Pages that are mapped to either the InstructioseGldCoupled Memory (ICCM) or the Data Closely
Coupled Memory (DCCM) must be of the same sizdna<ICM. This avoids the problem that the
physical address is not available early on in tieraprocessor pipeline at the time when the address
is applied to the CCMs. By adhering to this reisitcthe part of the virtual address that is ajpti®

the CCMs is the same as the same part of the @hygidress, which means that it is not necessary to
wait for translation.

For example, assuming the design contains a 16KBNDQ arger pages are constructed by defining
several contiguous 8Kb pages. In this case theviilg page mapping could be performed:

» Virtual page 0x10000 is mapped to physical pagetOf0 (page 1)
» Virtual page 0x12000 is mapped to physical pages080 (page 2)

NOTE There are two 8Kb-pages in the list above to form the 16Kb DCCM page. Also note that both the
virtual page 0x10000 and the physical page 0x14000 are aligned to the size of the DCCM (16Kb).

ARC® 700 Memory Management Unit Reference 15

Page Descriptor Format Page Table Descriptor

Restriction for Pages Using Large Caches

The ARC 700 caches are batintually indexedandphysically taggedThis means that the address

(i.e theindeX applied to the cache RAMs is the virtual address the address used to compare the
cache tags is the translated physical addressmildre architectural benefit of having this setup is

that the cache RAM lookup can start one cycle éaalnd therefore does not have to wait for the page
translation to complete before accessing the cRétids.

For small caches the virtual and physical indexd@eatical, but for large caches they can be
different. When the virtual and physical indexes @ifferent then one physical tag can be held in
several different indexes. This problem is caltadhe aliasingin the ARC 700 processor cache
aliasing is avoided by restricting the page allimrain such a way that the virtual and physical
indexes are always identical.

Cache aliasing only occurs in the ARC 700 procefsdnstruction caches of sizes 32KB to 64Kb
and for data caches of the size 64Kb. The resiristfor page allocations are as follows:

« 64Kb data cache and 32K b instruction cache - address bit 13 must be the same for both the
virtual and physical address. For example virtaarass 0x2000 can be mapped to physical
address 0x102000 but not to 0x100000.

» 64Kbinstruction cache - address bits 13-14 must be the same for bothithel and physical
address. For example virtual address 0x6000 canapped to physical address 0x106000 but
not to 0x100000, 0x102000 or 0x104000.

Page Descriptor Format

The 32-bit ARC 700 page descriptor consists of 3&it words, and is arranged as follows. The
first word relates to TLB Page Descriptor O (TLBRPe second to TLB Page Descriptor 1
(TLBPD1).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

R V[17:0] R |V|R|G A[7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7
P[18:0] Reserved F YV

4
W

E T o
A fjo
DT v
py)

The following fields are described in more detail:
* V[17:0] - Virtual Page Number

e V-Valid

* G -Global

» A[7:0] - Address Space Identifier ASID

* P[18:0] - Physical Page Number

« RK, WK, EK - Kernel Mode Permission Bits
* RU, WU, EU - User Mode Permission Bits

» FC - Cached/Uncached Flag

16 ARC® 700 Memory Management Unit Reference

Page Table Descriptor Page Descriptor Format

V[17:0] - Virtual Page Number

This 18-bit field provides the virtual page numberresponding to this page descriptor (Virtual
address shifted right by 13 bits, and top bit mdsi€). The memory management unit checks the
virtual address of an incoming request againsettiges in the translation lookaside buffer. If a
matching entry is found, the physical address @aodiculated. The field is aligned in the page
descriptor to allow generation from a 32-bit addnesing a simple AND operation.

Bit 31 of TLB Page Descriptor 0 is not includedhis field since translated memory is only avaiabl
in the lower 2Gb of the address space.

V - Valid

This bit field is used to indicate whether an emrthe TLB should be considered during a memory
access when checking for a matching TLB entry. Witeared, it is used by the MMU to determine a
suggested entrpr replacement - invalid entries will always beosen before a valid entry is evicted.

G - Global
This bit is used to indicate whether the pagglabal:
* When set true (1)

O This page appears in all virtual address spaces
- ASID bits for this entry are ignored, and mustsbketo zero

* When set false (0)
[0 This page appears in a single virtual address spsmdescribed by the ASID bits A[7:0]
If a page is required to be mapped into more themnaaldress space:

» If the page is to be available in all address spawsgéh identical access requirements, a single
page table entry may be used with the global bit se
It is the responsibility of the operating systenetsure that a globally available page does not
overlap with a page at the same location in a singdress space - this condition will cause a
fatal machine-check exception.
Page read/write/execute permissions are not carsidehen testing for multiple overlapping
pages - hence it would seem to be possible topsatgliobal page accessible only by the
operating system in kernel mode, and a page aaime address only accessible by one user
mode task. However this arrangement is not perdnétel will cause a fatal machine check
exception.

» If the page is to be available in some but noadtlress spaces, or if it is to be available in all
address spaces, but with different access pri\sleipen a separate page table entry is required
for each virtual address space in use.

The global bit is typically used for mapping prieatperating system memory pages - in which case it
would not be used with user mode read/write/exegetmissions.

In other operating system or RTOS systems, thissnmoaly be used for data or code areas shared
between all processes and the operating system.

A[7:0] - Address Space Identifier ASID

These bits describe the 8-bit address space ig@r{#fSID) that can be considered to be an extensio
of the virtual address.

ARC® 700 Memory Management Unit Reference 17

Page Descriptor Format Page Table Descriptor

When theglobal bit G is set false, and a memory access is tgiecg, these bits are tested against
the current task’s ASID from the machine statussteg (PID) to determine whether a TLB match
has taken place.

With an 8-bit ASID, it follows that the ARC 700 essor supports up to 256 concurrent virtual
address spaces.

P[18:0] - Physical Page Number
This 19-bit field is used for virtual to physicaldress translation, as follows:
* When the entry is marked valid:

O This virtual memory page is present in physical mgm

O This field describes the physical page in main mgrttoat is used for accesses to the virtual
page. The high order bits of the physical addneagd number) come from this field, and the
bottom twelve bits (page offset) come from the drottwelve bits of the virtual address.

The physical page can be located anywhere in th8Ztbit (4Gb) address space.

* When the entry is not marked valid

O This virtual page is not present in physical mem@mly useful in an operating system
supporting demand-paged virtual memory.

[0 This field would typically be used by the OS toigade the location of the page in a disk-
based swap file.

The physical page number of a block is the addres®e block shifted right by 13 bits (divided by
8192).
Rk, Wk, Ex - Kernel Mode Permission Bits

Each ARC 700 page descriptor features separatssicoatrol bits for user mode and kernel mode
tasks.

It should be noted that these do not form parhefaddressing mechanism - it is not permissible to
have more than one TLB entry mapped to the samgaViaddress - even if the access permissions do
not overlap.

An exception will be generated if an access iggtted which violates the access permissions for the
page. The access will not complete.

These three bits control the permissions granteasics, interrupts or exception handlers running in
kernel mode or other operating system functionsgukérnel mode. Setting the bit true (1) indicates
that the permission is granted.

* Rk - Kernel mode read permission
* Wy - Kernel mode write permission
* Ex- Kernel mode execute permission

See the subsection later in this section for meseudsion regarding typical setting of the pernoissi
bits.

18 ARC® 700 Memory Management Unit Reference

Page Table Descriptor Page Descriptor Format

Ru, Wy, Ey - User Mode Permission Bits

Each ARC 700 page descriptor features separatasacoatrol bits for user mode and kernel mode
tasks.

It should be noted that these do not form parhefaddressing mechanism - it is not permissible to
have more than one TLB entry mapped to the samgaViaddress - even if the access permissions do
not overlap.

An exception will be generated if an access igvgited which violates the access permissions for the
page. The access will not complete.

These three bits control the permissions granteasics running in user mode. Setting the bit tdye (
indicates that the permission is granted.

* Ry - User mode read permission

* Wy - User mode write permission

* Ey- User mode execute permission

g_ee the subsection later in this section for m@eudsion regarding typical setting of the permoigsi
its.

Fc - Cached/Uncached Flag
This bit controls cache operation when accessiisgoihof virtual memory.

» The default condition is to set this bit true tdigate that caches may be used for accesses to this
page.

* When this bit it set false, accesses to this pagieent directly to external memory, bypassing
caches. This can be used for 10 register spacelatile data areas - such as a region of memory
where data is written by a DMA transfer.

It is the responsibility of the operating systemyser code) to ensure that the cache does nainont
entries from pages that are markeatachedThis is to ensure that the cache does not contdin
data that might either be flushed into the uncaglssg at some later point, or which might be used
incorrectly if a page is subsequently markedhed

When more that one virtual page is mapped to theegahysical page, all pages must have the same
setting for cached/uncached flag.

In addition to the cached/uncached switch in trgemdescriptor, individual load and store
instructions have a cached/uncached mode switategses are performed without caches if either
the instruction or the page descriptor indicatesachedAccess use the caches only if both the
instruction and the page descriptor indiazdehed

ARC® 700 Memory Management Unit Reference 19

TLB Indices Arrangement Page Table Descriptor

TLB Indices Arrangement

The table below shows the arrangement of indicéisérARC 700 TLB:
Table 1 ARC 700 Set-Associative TLB Indices

Indices Description

0x0 JTLB setOway 0
Ox1 JTLB set O way 1
0x2 JTLB set 1 way 0
0x3 JTLB set 1 way 1
0x4 JTLB set2 way 0
0x5 JTLB set 2 way 1
0x6 JTLB set3way 0
0x7 JTLB set3way 1
OxFC JTLB set 127 way 0
OxFD JTLB set 127 way 1
OxFE JTLB set 128 way 0
OxFF JTLB set 128 way 1
0x200 MITLB entry O
0x201 MITLB entry 1
0x202 HITLB entry 2
0x203 MITLB entry 3
0x400 UDTLB entry O
0x401 UDTLB entry 1
0x402 UDTLB entry 2
0x403 UDTLB entry 3
0x404 UDTLB entry 4
0x405 UDTLB entry 5
0x406 UDTLB entry 6
0x407 UDTLB entry 7

The privileged instructions for maintaining the ARQ0 TLB all use an index number. This field is
also used to signal error and status informatioarmdm instruction asks for an index number to be
returned.

On all ARC 700 implementations, index numbers rstestt from zero and be continuous. In a set-
associative TLB, thevayis specified with the low order bits of the index.

The index scheme is arranged to allow future TldBsd implemented with different number of
entries and/or different associativity. For exampléuture 4-way set-associate TLB would have
indexes; 0 =setOway 0, 1 =setOway 1, 2 Dsedy 2, 3 =set 0 way 3, 4 =set 1 way 0 and so
forth.

20 ARC® 700 Memory Management Unit Reference

Page Table Descriptor

MMU Build Configuration Register, MMU_BUILD

NOTE A fully associative n-entry TLB effectively has one set with n ways, hence entries would be numbered
0 =setOway 0, set 0 way 1 up to set O way n.

Two-way set associative

Fully associativ Way 0 Way 1
0 0 1
1 2 3
2 4 5
\/ \/
n-1 n-2 n-1

Figure 3 Fully-Associative and Set-Associative TLB Indices

MMU Build Configuration Register,
MMU_BUILD

Build configuration registemmu_BuILD (0x6F) contains information for Operating Systems to
determine the configuration of the Memory Managenénrit. The default for the complete register
for ARC 700 MMU version 0x1 is 0x01170408. Replaeatalgorithms are inferred from the

version number.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Version JA JE ITLB DTLB

The following table describes the fields in moréade

Field Description
ITLB Integer number of ITLB/ uITLB entries

Number of HITLB entries for ARC 700 (4)
DTLB Integer number of DTLB/ uDTLB entries

Number of uDTLB entries for the ARC 700 proces&)r (
JE Joint TLB contains 2JE entries, per way

ARC 700 processor defaults to 0x7 (128 entriesyzsr
JA Joint TLB contains 2JA ways

ARC 700 defaults to 0x1 (2 ways)
Version Version

First MMU release for the ARC 700 processor hasiearnumber 0x1

ARC® 700 Memory Management Unit Reference

21

Data Uncached Build Configuration Register, DATA_UNCACHED Page Table Descriptor

Data Uncached Build Configuration Register,
DATA UNCACHED

The build configuration regist®ATA_UNCACHED (0x6A) describes the Data Uncached region.
Memory operations that access this region will gsvae uncached. Instruction fetches that access the
same region will however be cached as this regitates to data only.

This region, which is only present in builds with MU, is fixed to the upper 1 Gb of the memory
map. As the upper 2 Gb of the memory is the unsted@d memory region, the Data Uncached region
is consequently both uncached and un-translateéd.mkes this region suitable for e.g. peripherals.
Note that this region is active even if the MMUWlisabled.

The Data Uncached region is a part of the logienory map and not part of the physical memory
map. As a consequence, this region will not affegaige that is translated to a physical locatiah th
resides within the address range of the Data Umchdgion. Instead, such a page would be cached
or not depending on its cache flag.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

BASE_ADDRESS RESERVED SIZE VERSION

The following table describes the fields in moréade

Field Description

Version Version

Current version number of this BCR is 0x1
SIZE Size of the Data Uncached region

0x0 - 16 MB

0x1 - 32 MB

0x2 - 64 MB

0x3 - 128 MB

0x4 - 256 MB

0x5 - 512 MB

0x6 - 1024 MB

0x7 - 2048 MB

The size is set to 0x6, i.e. 1024 MB.
BASE_ADDRESS Base address of the Data Uncached region

As it must be in the upper half of the memory spadsch is the un-translated
region) this means that bit 31 must always becsét t

The base address is set to 0xCO.
Reserved Reserved
Should be set to zero.

22 ARC® 700 Memory Management Unit Reference

Chapter 3 — Privileged Auxiliary Registers for

TLB Access

In this section:

Maintenance and Control

TLB Page Descriptor Reqisters, TLBPDO and TLBPD1

TLB Index Reqister, TLBIndex

TLB Command Reqister, TLBCommand

O
O
O
O

TLBWrite Command
TLBRead Command
TLBProbe Command
TLBGetindex Command

Process Identity Register, PID

Scratch Data Reqister, SCRATCH DATAO

ARC® 700 Memory Management Unit Reference

23

Maintenance and Control Privileged Auxiliary Registers for TLB Access

Maintenance and Control

These auxiliary registers are provided for intéacbetween an operating system (or debugger) and
the TLB:

Table 2 Special Purpose Registers for TLB Control

Auxiliary Name Read/Write Description

Register

0x405 TLBPDO riw TLB Page Descriptor register 0

0x406 TLBPD1 riw TLB Page Descriptor register 1

0x407 TLBIndex r/w TLB Index register

0x408 TLBCOmmand w TLB Command register (fully serializing)

0x409 PID rw Process ID, TLB enable

0x418 SCRATCH_DATAO riw 32-bit scratch auxiliary register that can be used

store any data. The OS may for example use this
register to hold the base address of the first leage
table in order to speed up page table access.

These registers may only be accessed when in kewoad. An attempt to access these registers from
user mode will result in an exception.

In an ARC 700 processor write operations to theliang registers are generally serializing, i.e. a
pipeline flush occurs after the auxiliary write ogon has committed. For best operating system
performance, it is desirable to minimize time sgeriLB miss handlers - hence minimizing pipeline
flushes is important.

Writes to auxiliary registersLepp0, TLBPD1 andTLBIndex do not affect the operating environment of
the processor until the.ecommand register is written, so it is possible to make @sito auxiliary
registersrLepDO, TLBPD1 andTLBIndex non-serializing.

Writes to therLBcommand or PID register affects the processor operating environmeectly and
hence these writes are serializing. WritesdRaTCH_DATAO register are not serializing. Auxiliary
read operations are not serializing.

TLB Page Descriptor Registers, TLBPDO and
TLBPD1

These registers are used for the following purposes
* To supply a page descriptor for subsequent loadioghe TLB
* Toreturn a page descriptor from a TLB probe openat

* The virtual page number field is used to specigthitual address of a TLB entry to be removed
(all other fields are ignored)

* On TLB miss exceptions the TLB Page DescriptorstegiO,TLBPDO, is updated with the VPN
and ASID associated with the address that wasatgecof the TLB miss exception. To aid the
TLB miss handler, the global is cleared and thélzit is set on TLB miss exceptions.

24 ARC® 700 Memory Management Unit Reference

Privileged Auxiliary Registers for TLB Access TLB Index Register, TLBIndex

The layout of the register fields corresponds dydotthe ARC 700 page descriptors, Same
Descriptor FormafThe operation of the TLB maintenance registeroisaffected by the setting of
the TLB-enable bit in thprocess identity reqist¢PID [T]). All reserved bits in the page descripto
are set to zero.

TLB Index Register, TLBIndex

This register is set by the programmer to commuaeittze index folf LBWrite andTLBRead
commands, and set by the hardware to communicatsuét from thel LBGetl ndex andTL BProbe
commands. Bit 31 is set to indicate an error.a.ealue of 0x8000.0000 or above indicates an error.
See command descriptions for more information @gesWrites to this register can be non-
serializing. The address imBIndex register is mapped as shown below.

31 10 0

E Reserved Index

The Reserved field is set to zero. The followiralds are described in more detail:
e Index, Read/Write

* E, Error Code, Read only

Index, Read/Write

This part of the register is set by the programmm@ommunicate the Index faiL BWrite and
TLBRead commands, and set by the hardware to communicatsu#t from thel L BGetlndex and
TLBProbe commands. If an error has occurred (E is set) thehndex contains the error code. See
command description in tlELBCommandsection for more information on usage.

Table 3 TLBIndex Addresses and Error Codes

Access Type Address/Error Code Description

JTLB 0x0-OxFF This allows botiTLBWrite, TLBRead to
be performed on the JTLB RAM.

uITLB 0x200-0x203 This allows the entries in thd TLB to be
read TLBRead).

pDTLB 0x400-0x407 This allows the entries in theDTLB to be
read TLBRead).

Error Code (E flag is set) 0x0 Failed operation.

Error Code (E flag is set) Ox1 Duplicate TLB erdrie

E, Error Code, Read only

This bit is set by the hardware when an error leasimed. Writes to this flag are ignored.

ARC® 700 Memory Management Unit Reference 25

TLB Command Register, TLBCommand Privileged Auxiliary Registers for TLB Access

TLB Command Register, TLBCommand

This fully serializing register is used to initi# transactions with the TLB. Data is communidate
through therLsppo, TLBPD1 andTLBIndex registers. TLB command operations can still be
performed when MMU is disabled (when the T bit is @hePID register).

The following commands are supported:
Table 4 TLB Command Register Command List

Cmd Name Description

0x1 TLBWrite Write a TLB entry to the index location specifiedrisIndex. Also used
to remove entries.

0x2 TLBRead Read a TLB entry intoLepPp0 or TLBPD1 from the location specified in
TLBIndex.

0x3 TLBGetindex SetTLBIndex to contain a suitable index location for the pegscriptor
in TLBPDO OF TLBPD1 Or an error code

0x4 TLBProbe Determine if a TLB entry is present that matcheswvintual address
supplied inTLBPDO Or TLBPD1, and return its index location or an error
code inTLBIndex.

TLBWrite Command
This command is used to load an entry into the &t Bhe specified index location.

The operating system may determine an appropoatgibn for the entry by itself, or may ask the
MMU hardware for a suggestion by using THeBGetl ndex command.

TheTLBWT rite command is also used to remove (shoot down) egigintries, by loading an entry
with the V bit set false. TheLepD0 andTLBPD1 register bits would typically be set to all zebafore
issuing arLBWrite command. The operating system may determine awitsthe index of the
entry to be removed, or may use THeBProbe command to return an index that corresponds to a
virtual address/ASID combination.

TheTLBWTrite command operation can still be performed when Misidisabled (when the T bit is
0 in thePID register).

TLBWrite Usage

» Page descriptor to be loaded into the TLB is brougb thetLspp0 andTLBPD1 auxiliary
registers.

* TLBIndex contains the index location to which the entrjoibe loaded.
» TLBPDO andTLBPD1 auxiliary registers are unchanged afterThd3\Write operation

» Ifaninvalid index value is supplied (out of rajgte TLB Load request is ignored, and
TLBIndex Will be loaded with error flag E set and the Indiedd containing error code 0xO (full
value returned is 0x8000.0000).

* Invalid entries may be loaded (V=0). Such entridsnet be considered during lookup
operations, however this feature allows an enttyetinvalidated and also allows an entire
save/restore of the TLB contents to be performed.

26 ARC® 700 Memory Management Unit Reference

Privileged Auxiliary Registers for TLB Access TLB Command Register, TLBCommand

TLBRead Command

This command is used to read an entry from the HtBhe specified index location. The operating
system may either determine the location to be, r@achay use th&L BProbe command to obtain
the location of an entry from a virtual address.

TheTLBRead command operation can still be performed when Misldisabled (when the T bit is
0 in thePID register).

TLBRead Usage
* TheTLBIndex register contains the location from which the gigrto be read.

» The read and write permission bits (in total 4)t® always set to zeros when reading entries in
the ulTLB. Read and write permissions only applyhieuDTLB.

» The execution permission bits (2 bits) are alwatg®s zeros when reading entries in the uDTLB.
Execution permission only apply to therLB.

» The reserved bits are always set to zeros whelingeadtries in the Joint TLB (writes to these
bits are ignored).

 TLBPDO andTLBPD1 registers contain the TLB entry from the specifi@chtion. Entries in the
TLB that are marked as invalid are returned as #pgear in the TLB.

O If an invalid index value is supplied (out of rahgieTLBIndex Will be loaded with error
flag E set and the Index field containing errore0a0 (full value returned is 0x8000.0000),
and the TLB Read operation returns an entry withitd set to zero.

TLBGetIndex Command

This command is used to allow the hardware to plea TLB index to which a new entry may be
loaded. This has a number of benefits:

* The mechanism enables the creation of simple astd'f2B miss handlers that are independent of
the size and associativity of the underlying TLBd &an rely on the hardware to manage the
replacement algorithm.

* An operating system that is aware of the configonadf the TLB can implement a different or
more sophisticated replacement algorithm thanpgaertied by the hardware - at the cost of
increasing the number of cycles taken during TLBs®$.

* The handling of complex error conditions may beedeid to the operating system.

The TLBGetIndex command operation can still be performed when Misldisabled (when the T
bit is 0 in thePID register).

TLBGetIndex Usage

» The page descriptor to be loaded into the TLB aught into therLspp0 andTLBPD1 special
purpose registers.

O Certain implementations (e.g. fully associativeymat require theLBPb0 andTLBPD1
registers to contain the new page descriptor thit be loaded. However, in order to ensure
that a TLB miss handler may be used with any TlhB,gage descriptor should always be
loaded before executing the TLBGetIindex operation.

» TheTLBIndex register is loaded with the location to which supplied page descriptor can be
loaded.

ARC® 700 Memory Management Unit Reference 27

Process Identity Register, PID Privileged Auxiliary Registers for TLB Access

O The replacement algorithm is pseudo-random.
O An index value is always returned, no error coodiiare returned

* Invalid ways are selected first, before considedmseudo-random generated victim.

TLBProbe Command

This command is used to check the TLB for an etfitay matches a supplied virtual address, and
return an index location or an error code.

TheTLBProbe command operation can still be performed when Misldisabled (when the T bit is
0 in thePID register).

TLBProbe Usage

* The V[17:0] field of therLepDO andTLBPD1 register pair contains the virtual address foralvhi
the TLB is to be searched. The A[7:0] field of the&pp0 andTLBPD1 register pair contains the
address space identifier (ASID) to be used forsteach. All other bits in theLBPDO andTLBPD1
register pair are ignored.

[0 As aresult of the command, tihesIndex register is loaded with the index location at vhic
the matching entry is located.

* If no matching entry is found in the TLB, tmesindex will be loaded with error flag E set and
the Index field containing error code 0xO0, (fullvareturned is 0x8000.0000).

» If more than one matching entry is found in the T TLBIndex register will be loaded with
error flag E set and the Index field containingpenode 0x1. The full value returned is
0x8000.0001.

* A matching entrys defined as a TLB entry for which:
0 The valid (V) bit is set true, and
[0 The virtual address field V[17:0] matches exaciiyd
O Either the ASID field A[7:0] matches exactly, oetglobal (G) bit is set
0

No other information is used for matching - Usertét mode permissions and flag bits are
not considered. The V bit in TLBPDO is also ignared

Process ldentity Register, PID

The Process Identity registerzf) contains privilege bits that control permissitimst can be
optionally extended to a user mode task, an addpes= identifier (ASID) field used by the memory
management system and compatibility mode bits. iBhasfully serializing register.

31 7 6 5 4 3 2 1 0

T Reserved P[7:0]

The Reserved field is set to zero. The followirelds are described in more detail:
e T, Global TLB Enable
e P[7:0], Address Space ldentifier ASID

28 ARC® 700 Memory Management Unit Reference

Privileged Auxiliary Registers for TLB Access Scratch Data Register, SCRATCH_DATAOQ

T, Global TLB Enable

The Global TLB Enable bit is used to enable orhlsshe MMU. When set to 0 the MMU is

disabled, which means that all logical addressesrapped directly to physical addresses. The MMU
needs to be enabled (Global TLB Enable bit se) i drder for memory protection and cacheability
to work on individual pages. Note that the Data aéfiied region is always active even when the
MMU is disabled. This field is set to OxO on reset.

P[7:0], Address Space ldentifier ASID

The 8-bit Address Space Identifier (ASID) is setly Operating System as the ASID of the
currently executing process. The ASID is used leyQiperating System and memory management
hardware to allow physical pages to be mappednmany separate virtual address spaces. This field
is set to 0x0 on reset.

Typically each independent task would have its &8tD value. This scheme is used to avoid the
need to reload address mappings when context smgttretween tasks. The ASID in this register is
checked against the ASID portion of a Page Desmr{{itD) unless the global bit, T, is set. Since
there may be more than 256 tasks running at anyiimee the Operating System manages the
allocation and use of ASIDs.

NOTE The ASID is checked in both user and kernel mode - allowing the OS to run tasks in either mode.

Writes to ther1p register should be made either from code runmingnitranslated memory or from
code running from a page with the Global bit seBi{d is ignored). This ensures that the code page
being accessed continues to be visible after tH® AsSchanged.

The processor ensures that the ASID update takast @hmediately after the SR instruction making
the change.

NOTE A machine check exception causes the Global TLB enable to be cleared (set to zero).

Scratch Data Register, SCRATCH_DATAO

The scRATCH_DATAO auxiliary register is a generic 32-bit scratchisesy that can be used in kernel
mode only to store any data. The OS can for exaog®ehis register to hold the base address of the
first level page descriptor table in order to spepghage table access. The default on reset iafkO
writes to thescRATCH_DATAOQ are non-serializing.

ARC® 700 Memory Management Unit Reference 29

Chapter 4 — Memory Management Exceptions

In this section:

Exceptions to Support Memory Management Functions

Flowchart for TLB Lookups

30 ARC® 700 Memory Management Unit Reference

Memory Management Exceptions Exceptions to Support Memory Management Functions

Exceptions to Support Memory Management
Functions

A number of exceptions are provided to support nigmmanagement functions:
* Instruction or Data TLB Miss
[0 TLB lookup cannot locate an entry for the supplietual address
 TLB error
[0 >1 matching entry during TLB lookup
» Protection violation
[0 The access being attempted was not enabled bydtecpon flags in the TLB entry
* Unaligned access

An access was performed that violated the alignmoenstraints of the machine - accesses must be
aligned to the size of the transaction.

For more information on the MMU related exceptiogfer to theARCompact™ Programmer's
Reference

The flow diagramFigure 4 shows how exception conditions are detected.

ARC® 700 Memory Management Unit Reference 31

Flowchart for TLB Lookups Memory Management Exceptions

Flowchart for TLB Lookups

r-r——~—F~F"~F"F"F~"~F~~~@@ @ ~¢F~“~~F¥F"~~*"~*"""~*"™*>""™*""~"~*>"~"~™"™""™*>"™>"™*""™"""*“"*""*™™"™™"™>"™>>"™>"™"*“"*“"™"™*"™~“~"~“"™~""~""~""™""™/"™7— a
| |
: From PID From access From access :
| Address space Virtual address (VA) Access type !
| : l
| ASID Virtual Page Number (VPN) [Page Offset| |R JW,(E([R W]E, |
|

I

un
aligned?

no

yes TLB
enabled
Look up possible entries One matching
no (PD.A=ASID OR PD.G=1) entry
AND PD.V=VPN AND PD.V=1
PD-Page descriptor
A 4
Check permission bits
M & (PD.permissions AND 70
3 3 access type)
o =l
g 3
=1 a
[(e
0
2 2
< =
A 4 A 4 y \ 4 y A
Unaligned | [Success! Machine TLB Miss Protection Success!
exception PA = VA check exception violation except. PA from MMU

Figure 4 TLB Lookup Flowchart

32 ARC® 700 Memory Management Unit Reference

Chapter 5 — Physical Address Calculation

In this section:

Calculation Process

ARC® 700 Memory Management Unit Reference

33

Calculation Process Physical Address Calculation

Calculation Process

When the Memory Management Unit (MMU) is enablduygical addresses are calculated using the
following inputs:

* Virtual address from the access (32 bits)
» Address space identifier (ASID) from the PID regist
* TLB contents

Cache mode fc Address space
access identifier

ASID | | Virtual page number Page offset

Virtual addres

A A

MMU
Translation Lookaside Buffer (TLB) or
passthrough for untranslated regions

l A \ 4

Memory Physical page number Page offset

control
signals

Figure 5 Physical Address Calculation
The outputs are as follows:

» The lower 13 bits (the page offset) come direatbyf the lower 13 bits of the virtual address
supplied.

* The remaining bits (19) come directly from the RtgisPage Number field;Ein the matching
TLB entry

The memory control signals are as follows:
» Cached/Uncached access
O Determined from TLB entry and cache mode from oadjaccess.

0 Cached access permitted if the access requestmhadaccess and the TLB entry permits it.
All other accesses are uncached - when eithenstruction or the TLB entry specifies an
uncached access.

34 ARC® 700 Memory Management Unit Reference

Chapter 6 — Memory Configuration Examples

In this section:

Example Page Table Operations

Example Arrangement

Operating System Private Space

User Mode Tasks

Kernel Mode Tasks

Shared Memory Regions

ARC® 700 Memory Management Unit Reference

35

Example Page Table Operations Memory Configuration Examples

Example Page Table Operations

Many modern operating systems implement demandepageial memory systems. This method of
managing memory enables a straightforward prograwgimniterface for application developers, and
allows the operating system (OS) to dynamically aganthe physical memory resources of the
machine, and implement controls and protectionsriemory used by and shared between individual
processes.

Properties of demand paged virtual memory systeciade:
e Sharing

O The physical memory attached to the machine casthlired between multiple processes
simultaneously

[0 More memory can be allocated than actually existshgsical memory in the machine, if
disk storage is available

[0 Areas of memory can be shared between two or noegses to allow for inter-process
communications and data transfer, with processispgcotections

* Protection
0 Each process appears to have its own private algpese

O For any given process: Memory owned by the proisegsotected from accesses by other
processes, and memory owned by other processestésied from access by this process

» Translation
O Address Translation maps progravirtiial) address to hardwarphysica) addresses
O Infrequently used areas of memory can be swappdiskauntil required

To implement common demand-paged virtual memoriegys, certain hardware resources are
required from the host processor - separate exgcotodes for user processes and the OS kernel, and
a memory management unit providing address transland memory protection.

All memory in the system is split into a numberegions, known as pages. Depending on the
system, these pages can be of fixed or variabte Bizhe ARC 700 processor pages are 8 KB.

The operating system keeps track of the memory bgedch process using a set of page tables.
Each page in the address map of each processasagiiage Table EntryPTE). Each process has
its own address space - either the OS will sugp@tthrough a single page table containing
mappings for all address spaces, or by using a&epaage table for each process.

The following sections provide further examplespage table operations:

¢ Memory Management Unit (MMU)

e Page Table Operations

Memory Management Unit (MMU)

The Memory Management Unit (MMU) provides hardwsugport and acceleration for address
translation and protection. In effect the MMU a&$sa cache into the page table - using a mechanism
known as th@ranslation Lookaside BuffélLB). Like an instruction or data cache, the TisB
maintained to keep a subset of frequently used tzdije entries within the MMU, in order to allow

36 ARC® 700 Memory Management Unit Reference

Memory Configuration Examples Example Page Table Operations

for address translation and protection checks tpebformed without delays. When a memory
location is accessed for which the page table estngt held in the TLB, the page table must be
searched and the appropriate entry loaded - @ mhatching page is found, an error condition
generated.

In some systems the mechanism used to updatettbepsge table entries held in the TLB is
provided by the MMU hardware. Other systems, iniclgdhe ARC 700 processor, use a ‘software-
managed’ TLB, where an exception handler is usegtiate the TLB entries from the page table.
This approach enables a simpler hardware desighgater flexibility for TLB management by
software.

Page Table Operations

These sections give an illustration of MMU funcBado support basic page table operations in a
typical operating system. It is not intended tabe=xhaustive list of all possible operations. Cisde
provided for illustrative purposes only.

e Add page table entry

* Remove page table entry

» Change page table entry

e TLB miss handlers

* Privilege Violation handlers

Add page table entry

When a new page table entry is added, no MMU ojperatire required. When a memory access is
attempted to the new page, an exception will resudtthe page will be located and loaded by the
TLB miss handler.

Remove page table entry

When a page table entry is removed, it is neceseagsure that the MMU does not still contain the
page in question.

The following function searches the MMU for a giveidress and removes it when present:

// mmu_shootdown_page:

//
// Remove page from MMU from address and ASID

//

// Address : virtual address

// ASID : address space identifier (0-255)
//

void mmu_shootdown_page(long address, long asid) {
long result;

// Load TLBPDO with address and ASID

//
_sr((address & 0x7fffe000) + (asid & Oxff),TLBPDO);

// Check for address in MMU with TLBProbe command
//

_sr(TLBProbe, TLBCommand) ;
// Get result of probe

//
result = _1r(TLBIndex);

ARC® 700 Memory Management Unit Reference 37

Example Page Table Operations Memory Configuration Examples

// If a matching entry exists (top bit clear), remove it

//

// - an update to the TLB will cause the uTLBs to be cleared
// thus ensuring the entry is cleared from there also.

//

if (!(result & 0x80000000)) {

// Location of entry to be removed is already in TLBIndex

//

_sr(0,TLBPDO);
_sr(0,TLBPD1);
_sr(TLBWrite,TLBCommand) ;

Change page table entry
When a page table entry is changed, it is necessanysure that the MMU contains the updated
information.

The following function searches the MMU for a givegsige table entry and updates it if present. The
OS could alternatively choose to remove an enomfthe TLB after a change, thus forcing a reload
by the TLB miss handler on the next access to dgep

// mmu_update_page:

//

// Find page and update it if present.

//

// vaddress : virtual address

// asid : address space identifier (0-255)
// global : Global flag (0/1)

// paddress : physical address

// flags : user and kernel flags (7 bits)
//

void mmu_update_page(long vaddress, long asid,
Tong global, long paddress, long flags) {
Tong result;

// Check to see if page is present in the mMMU

//
// Load TLBPDO with address and ASID

//
_sr((vaddress & 0Ox7fffe000) + (asid & Oxff),TLBPDO);

// Check for address in MMU with TLBProbe command

//
_sr(TLBProbe,TLBCommand) ;

// Get result of probe
//
result = _1r(TLBIndex);

// If a matching entry exists (top bit clear), reload it

//

// - an update to the TLB will cause the uTLBs to be cleared
// thus ensuring the entry is cleared from there also.

//

if (!(result & 0x80000000)) {

38 ARC® 700 Memory Management Unit Reference

Memory Configuration Examples Example Page Table Operations

// Location of entry to be reloaded is already in TLBIndex
//
// Create TLBPDO
//
_sr((vaddress & 0x7fffe000)
+ (asid & 0xff)
+ ((global & 1)<<8)
+ (1 << 10), TLBPDO);

// Create TLBPD1

//
_sr((paddress & Oxffffe000)
+ ((flags & 0x7f)<<2), TLBPD1);

// Load entry into TLB

//
_sr(TLBWrite,TLBCommand) ;

TLB miss handlers

A TLB miss handleis a performance-critical part of a software-mathhIMU system, and would
typically be written in assembler for maximum speBae exact logic for the code depends on how
the page tables are constructed in the particplarating system, but it is possible to describe the
sequence of events required. The ARC 700 processuides two vectors for TLB miss exceptions
to allow for separate handling of TLB misses framstiuction fetches and those from data accesses.
However, these two vectors can be directed todheeshandler if required.

The sequence of events for a TLB miss handlelustiated in these steps:

Save temp variables
Get Page Table base address - for speed, the O8huoage to store it in SCRATCH_DATAO
Get fault address from EFA register

Search page table for the faulting address, irctineent address space context - logic of the
search is implementation-specific, dependent opége table arrangement

Based on the page table search:

O If the requested page is not mapped into the asldiece of the process (i.e. it is not found
in the page table), go to the page fault handleletd with the error

O If the requested page is mapped into the addrege sjd the process, but the page is not
loaded into physical memory, go to the page faaittcher

O If a mapping for the requested page is preseititdrpage table, and the page itself is present
in physical memory, continue to load the TLB entry

At this point, the OS may choose to update the pelgle in order to keep track of which pages
have been accessed, or to maintain other statistics

The TLB entry is constructed from the following a@agxtracted from the Page Table Entry:
O Virtual Page Number

ARC® 700 Memory Management Unit Reference 39

Example Arrangement Memory Configuration Examples

Physical Page Number

Address Space Identifier (ASID)

User mode permission bits

Kernel mode permission bits

Valid bit

Global bit

* The two halves of TLB entry are written into TLBPBAd TLBPD1

» Execute TLBGetindex command to get an index loaatiovhich to place the TLB entry. The
command places an index value into TLBIndex, basethe data in TLBPDO and TLBPD1

* Execute TLBLoad command to load the TLB entry irBADO and TLBPD1 at the location now
in TLBIndex.

O 0O o ooOod

* Restore temp variables
o Exit

Privilege Violation handlers

In addition to the TLB miss handler, an operatipgtem using the MMU must also provide handlers
for privilege violationexceptions. These exceptions will occur when anamgaccesses a translated
memory location in a way that is not allowed by preemission flags of the page, for example:

* Write attempt intoread-onlymemory
* Jump into memory without execute permission

In most cases, a privilege violation in a user pssovould result in the process being terminated.
However, there are some cases where privilegetionlaxceptions are used to assist with virtual
memory operations.

In a demand-paged virtual memory system, pagesveapped between disk and physical memory. It
is useful to determine whether a page in physi@hory has becondirty, i.e. has been written
since it was created or loaded from disk.

TLB entries in the ARC 700 MMU are never alterediwy hardware once loaded - as a result, the
MMU cannot set a flag to indicate that a write ted®en place to a page.

In order to track dirty pages, a freshly createtbaded page is given read-only permissions in the

TLB by the operating system. When the page is ewitb by the user program, an exception will be
taken, at which point the OS can mark the page tablry as dirty. The TLB entry can be re-loaded
with the proper read/write permissions and the nogallowed to resume.

Example Arrangement

This is an example of the following arrangement:
* An operating system featuring a process model aadlinux

* The OS page tables, interrupt and exception hamdkerlocated in un-translated memory above
0x80000000

40 ARC® 700 Memory Management Unit Reference

Memory Configuration Examples Operating System Private Space

 Threetasks-A,BandC
O Two running in user mode (A and B)
O One running in kernel mode (C)
» Tasks A and C share set of library functions
» Task C sends data to Task B via a shared memock,lm which only Task C has write access.
» Each task has its own stack and heap

» Each task is located in the same space in virteahony (and hence the memory of other tasks is
not visible)

* The operating system has exclusive access to memapped 10, and to its own stack and
memory space - these are also located in un-ttadstaemory about 0x80000000.

The diagrams on the following pages use the folhgwshorthand for describing permissions (access
mode flags are not shown):

« RW,E: Kernel mode read/write/execute
* rwe: User mode read/write/execute
0. Global access (ASID ignore)
Linux has the following rules for setting permissdor memory regions:
* Read access implies that execute access is granted
* Write access implies that read access is granted
[0 Implying that execute access is also granted

This example assumes that the kernel mode permssai@ set identically to the user mode
permissions. If a debugging component of the operalystem needs to write to code space, it is
assumed that this component will need to set theogpiate write permission. An operating system
designed for high reliability and availability waldbe likely to use the permission bits in a more
sophisticated manner.

Operating System Private Space

In this example the OS has its own data storedhitranslated memory above 0x80000000, visible at
all times when in kernel mode but invisible to userde tasks:

ARC® 700 Memory Management Unit Reference 41

Operating System Private Space Memory Configuration Examples

'\
Untranslated-memory.
| | O mappi ngs | > Uncached
_/
Ker nel heap N
Interrupt stack
> Cached
Kernel code
Vector table ~/

Translated memory

Figure 6 OS Private Space Memory Map

The pages are mapped into the address spacdiatealland the permissions prevent access from
user mode tasks. Hence a user mode read, writeeou from these pages would be a protection
violation and the appropriate exception generd@dearly debugging systems or tasks would need to
enable reads and writes to code space of user taskiein order to display disassemblies and to set
and remove breakpoints.

When the processor is in kernel mode and a valilDASset, the address space will include not only
the un-translated memory described above, butthéspages with matching ASID values. For
example, if the kernel were entered whilst runriagk B, the memory space would be as follows:

42 ARC® 700 Memory Management Unit Reference

Memory Configuration Examples Operating System Private Space

-~
Untranslated-memory
| 'O mappi ngs | > Uncached
/
Kernel heap ™
Interrupt stack
>~ Cached
Kernel code nmllocs
Vector table W,

Translated memory (Task B)

RWre- Shared data
(receiver)

RW- 1 we- Task B stack

RW-r - e- Task B code

Figure 7 Task B Memory Map

In this example, kernel mode read/write access ijgsioms are set on user task data areas in order to
allow OS calls using kernel mode to take data frana return data to the calling task’s memory
space.

ARC® 700 Memory Management Unit Reference 43

User Mode Tasks Memory Configuration Examples

User Mode Tasks

Two user-mode tasks are in the system - each$awiit code and data area - mapped in the same
location in the memory map in each case to prewewanted interaction between tasks.

Translated memory (Task A) Translated memory (Task B)

R- Er - e- Shared lib R- Er-e- Shared data
(receiver)

Task C heap

RWET we - Task A Stack RWET we- Task B stack
Task A heap Task B heap
R- Er - e- Task A code R-Er-e- rask B coue

Figure 8 Task A and B Memory Maps

The un-translated memory region is not availablester mode tasks. Any access would cause a
protection-violation exception, and hence this spaat shown in the preceding memory map
diagrams.

44 ARC® 700 Memory Management Unit Reference

Memory Configuration Examples Kernel Mode Tasks

Kernel Mode Tasks

Some operating systems allow users to supply {@sich as device drivers) that are to be run in
kernel mode.

Untranslated memory)
| | O mappi ngs | > Uncached

-/

Kernel heap I

Interrupt stack

Kernel mal |l ocs > Cached

Ker nel code

Vector table

Translated memory (Task C)

R- Er - e- Shared lib

R- Er we- Shared data
(sender)

RVIEr we- Task C stack
Task C heap

R-Er-e- Task C code

Figure 9 Task C Memory Map

In this example Task C is run in kernel mode. Ashsiit has access to its own memory spaces plus
the un-translated memory space - which includesmgmory mapped 10 space.

Clearly the OS code and data areas in un-transtaggdory are not protected from erroneous writes
from Task.

NOTE A malicious task running in kernel mode would have sufficient privileges to take over the entire
system - hence the OS should only run trusted tasks or drivers in kernel mode

ARC® 700 Memory Management Unit Reference 45

Shared Memory Regions Memory Configuration Examples

Shared Memory Regions

This example has two regions of memory shared lestwasks - a shared data area and a shared
library.

(" Untranslated memory
Uncached < | IO neppings |

-

~ Ker nel heap

Interrupt stack

Cached < Kernel mal |l ocs
Ker nel code

N\ Vect or Table

Translated memory Translated memory Translated memory

(Task A) . (Task B) (Task C)
R-Er-e- Shar ed Ilbl R-Er-e- Shared lib
R-Er-e- Shared data R-Erwe- Shared data
(receiver) (sender)
RVErwe- Task A stack Task C heap Task C heap
RVWErwe- Task B stack RVErve- Task C stack
Task A heap Task C hea|
Task B heap p
R-Er-e- Task A code
R-Er-e- Task B code R-Er-e- Task C code

Figure 10 Shared Memory Regions

Since these shared areas of memory are shareddmesome tasks but not all tasks, they are not set
to be globally accessible. Instead, multiple padpet entries are created mapping to the same
physical pages for the address spaces of eacheiqgking access.

The use of separate page table entries allowscttessa permissions for task to be set individually -
allowing one task read-write access, and othesteeskd-only access, for example.

In this case, task B only has read access to trediata block, whereas task C (running in kernel
mode) has both read and write access.

NOTE There is a restriction on how page mapping can be done for shared pages (see Restriction for
Shared Pages).

46 ARC® 700 Memory Management Unit Reference

	ARC® 700 Memory Management Unit Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	List of Tables
	MMU Introduction
	Overview
	MMU Features
	Memory Model
	Translation Lookaside Buffers
	Programming Model

	Page Table Descriptor
	Page Tables
	Page Descriptor
	Restrictions of Page Mapping
	Restriction for Shared Pages
	Large Instruction Cache Aliasing
	Restriction for Pages Mapped to CCMs
	Restriction for Pages Using Large Caches

	Page Descriptor Format
	V[17:0] - Virtual Page Number
	V - Valid
	G - Global
	A[7:0] - Address Space Identifier ASID
	P[18:0] - Physical Page Number
	RK, WK, EK - Kernel Mode Permission Bits
	RU, WU, EU - User Mode Permission Bits
	FC - Cached/Uncached Flag

	TLB Indices Arrangement
	MMU Build Configuration Register, MMU_BUILD
	Data Uncached Build Configuration Register, DATA_UNCACHED

	Privileged Auxiliary Registers for TLB Access
	Maintenance and Control
	TLB Page Descriptor Registers, TLBPD0 and TLBPD1
	TLB Index Register, TLBIndex
	Index, Read/Write
	E, Error Code, Read only

	TLB Command Register, TLBCommand
	TLBWrite Command
	TLBRead Command
	TLBGetIndex Command
	TLBProbe Command

	Process Identity Register, PID
	T, Global TLB Enable
	P[7:0], Address Space Identifier ASID

	Scratch Data Register, SCRATCH_DATA0

	Memory Management Exceptions
	Exceptions to Support Memory Management Functions
	Flowchart for TLB Lookups

	Physical Address Calculation
	Calculation Process

	Memory Configuration Examples
	Example Page Table Operations
	Memory Management Unit (MMU)
	Page Table Operations

	Example Arrangement
	Operating System Private Space
	User Mode Tasks
	Kernel Mode Tasks
	Shared Memory Regions

