
ARC® 700 IP Library

ARC® 700 Memory Components

Reference

5116-017

ARC® 700 Memory Components Reference

ARC® International
European Headquarters
ARC International,
Verulam Point,
Station Way,
St Albans, Herts, AL1 5HE, UK
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

North American Headquarters
3590 N. First Street, Suite 200
San Jose, CA 95134 USA
Tel. +1 408.437.3400
Fax +1 408.437.3401

www.arc.com

ARC Confidential Information
© 2004-2008 ARC International (Unpublished). All rights reserved.

Notice
This document, material and/or software contains confidential and proprietary information of ARC International and is protected by
copyright, trade secret, and other state, federal, and international laws, and may be embodied in patents issued or pending. Its receipt or
possession does not convey any rights to use, reproduce, disclose its contents, or to manufacture, or sell anything it may describe. Reverse
engineering is prohibited, and reproduction, disclosure, or use without specific written authorization of ARC International is strictly
forbidden. ARC and the ARC logotype are trademarks of ARC International.

The product described in this manual is licensed, not sold, and may be used only in accordance with the terms of a License Agreement
applicable to it. Use without a License Agreement, in violation of the License Agreement, or without paying the license fee is unlawful.

Every effort is made to make this manual as accurate as possible. However, ARC International shall have no liability or responsibility to
any person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by this manual,
including but not limited to any interruption of service, loss of business or anticipated profits, and all direct, indirect, and consequential
damages resulting from the use of this manual. ARC International's entire warranty and liability in respect of use of the product are set forth
in the License Agreement.

ARC International reserves the right to change the specifications and characteristics of the product described in this manual, from time to
time, without notice to users. For current information on changes to the product, users should read the "readme" and/or "release notes" that
are contained in the distribution media. Use of the product is subject to the warranty provisions contained in the License Agreement.

Licensee acknowledges that ARC International is the owner of all Intellectual Property rights in such documents and will ensure that an
appropriate notice to that effect appears on all documents used by Licensee incorporating all or portions of this Documentation.

The manual may only be disclosed by Licensee as set forth below.

• Manuals marked "ARC Confidential & Proprietary" may be provided to Licensee's subcontractors under NDA. The manual may not
be provided to any other third parties, including manufacturers. Examples--source code software, programmer guide, documentation.

• Manuals marked "ARC Confidential" may be provided to subcontractors or manufacturers for use in Licensed Products. Examples--
product presentations, masks, non-RTL or non-source format.

• Manuals marked "Publicly Available" may be incorporated into Licensee's documentation with appropriate ARC permission.
Examples--presentations and documentation that do not embody confidential or proprietary information.

The ARCompact instruction set architecture processor and the ARChitect configuration tool are covered by one or more of the following
U.S. and international patents: U.S. Patent Nos. 6,178,547, 6,560,754, 6,718,504 and 6,848,074; Taiwan Patent Nos. 155749, 169646, and
176853; and Chinese Patent Nos. ZL 00808459.9 and 00808460.2. U.S., and international patents pending.

U.S. Government Restricted Rights Legend
Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor clauses in
the FAR, or the DOD or NASA FAR Supplement.

CONTRACTOR/MANUFACTURER IS ARC International I. P., Inc., 3590 N. First Street, Suite 200, San Jose, CA 95134.

Trademark Acknowledgments
ARCangel, ARChitect, ARCompact, ARCtangent, High C/C++, High C++, the MQX Embedded logo, RTCS, and VRaptor, are trademarks
of ARC International. ARC, the ARC logo, High C, MetaWare, MQX, MQX Embedded and VTOC are registered under ARC International.
All other trademarks are the property of their respective owners.

5116-017 April-2008

http://www.arc.com/

ARC® 700 Memory Components Reference iii

Contents

Chapter 1 — Introduction 5
Block Diagram 6

Chapter 2 — Register Set Details 7
Build Configuration Registers 7

DCCM Base Address, DCCM_BASE_BUILD, 0x61 7

Memory Subsystem Configuration Register, MEMSUBSYS, 0x67 8

DCCM RAM Configuration Register, DCCM_BUILD, 0x74 8

ICCM Configuration Register, ICCM_BUILD, 0x78 8

Instruction Fetch Queue Configuration Register, IFETCHQUEUE_BUILD, 0xFE 9

Chapter 3 — Closely Coupled Memories (CCM) 10
ICCM Build 10

Instruction Fetch in I-Cache and ICCM Mixed Builds 11

DCCM Build 11
DCCM/ICCM Memory Accesses 12

Big-Endian Configuration 13

Chapter 4 — Instruction Fetch Queue 14

iv ARC® 700 Memory Components Reference

List of Figures
Figure 1 Example ARC 700 System Architecture ..6

Figure 2 A Typical ICCM and DCCM Build..10

Figure 3 Simplified Processor/ICCM Diagram ...11

Figure 4 Simplified Processor/DCCM Diagram..12

ARC® 700 Memory Components Reference 5

Chapter 1 — Introduction
This document is aimed at programmers of the ARC® 700 Memory Components.

The following memory component information is provided:

• Block Diagram

• Build Configuration Registers

• Closely Coupled Memories Architectures

• Instruction Closely Coupled Memory (ICCM)

• Data Closely Couple Memory (DCCM)

• Instruction Fetch Queue

Block Diagram Introduction

6 ARC® 700 Memory Components Reference

Block Diagram
 Example Processor Island Configuration

ARC 700 Core

Peripheral BVCI
Arbiter

Data Memory
Pipeline

(D-Cache, DCCM)

Memory Controller

SSRAM

peripherals

Instruction
Fetch

(I-Cache,
ICCM, IFQ)

Internal Bus

Conversion
Bridge

64-bit Memory Bus 32-bit BVCI Peripheral Bus

System BVCI Arbiter

Bridge Bridge Bridge

64-bit
System Bus

64-bit Buses

XY
Memory

Figure 1 Example ARC 700 System Architecture

ARC® 700 Memory Components Reference 7

Chapter 2 — Register Set Details
The ARC 700 Memory Components use the following type of registers:

• Build Configuration Registers

Build Configuration Registers
There are various Build Configuration Registers (BCRs) which describe what type of CCM build that
has been selected:

• DCCM Base Address, DCCM_BASE_BUILD, 0x61

• Memory Subsystem Configuration Register, MEMSUBSYS, 0x67

• DCCM RAM Configuration Register, DCCM_BUILD, 0x74

• ICCM Configuration Register, ICCM_BUILD, 0x78

NOTE *The Data Closely Coupled Memory (DCCM) utilizes two BCR’s. 0x74 (DCCM_BUILD) should be
read initially in order to determine the presence and size of the DCCM, and the DCCM_BASE_BUILD
register (0x61) should be read to determine the physical base address of the DCCM in memory.

The registers as described in the following sections are arranged in numerical order.

DCCM Base Address, DCCM_BASE_BUILD, 0x61
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR[31:8] VERSION

The field descriptions are shown in the following table.

Field Description

VERSION Current Version

current version of the data closely coupled memory (DCCM) base address
register

ADDR Base Address

This configurable field specifies the DCCM Base Address. Depending on the
DCCM size the following address bit ranges are used:

· 31 down to 13 – 8K

· 31 down to 14 – 16K

· 31 down to 15 – 32K

· 31 down to 16 – 64K

· 31 down to 17 – 128K

· 31 down to 18 – 256K

Build Configuration Registers Register Set Details

8 ARC® 700 Memory Components Reference

Field Description

The default base address is set to 0x100.000.

Memory Subsystem Configuration Register, MEMSUBSYS, 0x67
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BE R EM

The field descriptions are shown in the following table.

Field Description

EM External Memory System Enabled - If there is an off chip RAM interface (i.e.
memory arbitrator, sequencer) then this bit is set to 1.

BE Big Endian System Enabled - If the ARC processor based system supports a big
endian configured system then this bit is set to 1.

DCCM RAM Configuration Register, DCCM_BUILD, 0x74
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SIZE VERSION

A zero is returned when the DCCM RAM is not present.

The field descriptions are shown in the following table.

Field Description

VERSION Current version

SIZE Size of DCCM RAM

0x0 = 2k

0x1 = 4k

0x2 = 8k

0x3 = 16k

0x4 = 32k

0x5 = 64k

0x6 = 128k

0x7 = 256k

ICCM Configuration Register, ICCM_BUILD, 0x78
This register describes both the size and version number of the Instruction Closely Coupled Memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 x 11 10 9 8 7 6 5 4 3 2 1 0

BASE Reserved SIZE VERSION

A zero is returned when the ICCM is not present.

The field descriptions are shown in the following table.

Field Description

VERSION Current version 0x1

SIZE ICCM RAM Size

This field refers to the size of the ICCM RAM:

Register Set Details Build Configuration Registers

ARC® 700 Memory Components Reference 9

0x0 – No ICCM

0x1 – 8K Bytes

0x2 – 16K Bytes

0x3 – 32K Bytes

0x4 – 64K Bytes

0x5 – 128K Bytes

0x6 – 256K Bytes

0x7 – 512K Bytes

BASE Base Address

This configurable field specifies the ICCM Base Address. This address must be
on a boundary defined by the size of the Instruction CCM RAM.

· ICCM size 8K – x=13

· ICCM size 16K – x=14

· ICCM size 32K – x=15

· ICCM size 64K – x=16

· ICCM size 128K – x=17

· ICCM size 256K – x=18

· ICCM size 512K – x=19

The default base address is set to 0x0.

Instruction Fetch Queue Configuration Register,
IFETCHQUEUE_BUILD, 0xFE
The Instruction Fetch Queue build configuration register, IFETCHQUEUE_BUILD, indicates that the
Instruction Fetch Queue is present in a design.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved VERSION

The field descriptions are shown in the following table.

Field Description

VERSION Version

0x01 = Current version of Instruction Fetch Queue.

10 ARC® 700 Memory Components Reference

Chapter 3 — Closely Coupled Memories (CCM)
A Closely Coupled Memory architecture (CCM) has two separate memory buses: one for code and
another for data.

The ARC 700 processor can be configured to a CCM architecture by selecting Closely Coupled
RAMs rather than caches. CCMs allow for faster program execution as both instruction code and data
is held locally in the memories.

FCH DEC SEL WB ALN RF EX

ICCM

DA2

DA1

DCCM
RAM
CTRL

DBU

EA

DAWB

ARC 700 Processor Integer Pipeline
Commit
Point

Write -back
to RF stage

Write -back
to RF stage

LD/ST Access Into ICCM

ICCM DMI DCCM DMI
Figure 2 A Typical ICCM and DCCM Build

The following architecture options are available:

• ICCM Build

• DCCM Build

ICCM Build
The Instruction Closely Coupled Memory (ICCM) is similar to the Data Closely Coupled Memory
(DCCM) in that it is a passive memory. The ICCM is mapped into physical memory space and its
base address is configurable (refer to ICCM Configuration Register, ICCM_BUILD, for more details)

The size of the ICCM is configurable during the ARChitect build phase, and the RAM sizes
supported are 8, 16, 32, 64, 128, 256 and 512 Kbytes.

All code accesses that fall within the range of the ICCM (0x0000 0000 to last word aligned address in
the selected RAM size) result in an ICCM ‘hit’. All accesses to the ICCM are single cycle.

Closely Coupled Memories (CCM) DCCM Build

ARC® 700 Memory Components Reference 11

Accesses that exceed the physical boundary of the mapped RAM resource generate a memory
exception.

In order to determine the ICCM RAM size, the ICCM build configuration register must be
interrogated (auxiliary register 0x078).

ARC 700
Processor

ICCM

Direct Memory Access
Interface

DCCM/ICCM Memory
Interface Instruction

Fetch

Instruction Fetch

Figure 3 Simplified Processor/ICCM Diagram

Instruction Fetch in I-Cache and ICCM Mixed Builds
As a power saving feature in the ARC 700 processor, only one instruction memory is access for each
instruction fetch in a mixed I-Cache and ICCM build. An instruction memory that has been fetched
will keep on being fetched until a change is detected. A two cycle overhead is incurred to change
from fetching one instruction memory to another. To remove uncertainty in handling interrupts,
instruction fetch after an interrupt is assumed to start from ICCM. For performance critical interrupt
handling routine (ISR), it is recommended to relocate the interrupt and exception vectors and the ISR
to ICCM.

DCCM Build
The Data Closely Coupled Memory (DCCM) is a fast on-chip RAM that can either complement or
replace the standard data cache architecture.

It has a direct memory interface that allows any device that is connected to it to perform burst
operations to its memory (both read and write).

DCCM Build Closely Coupled Memories (CCM)

12 ARC® 700 Memory Components Reference

ARC 700
Processor

DCCM

Direct Memory Access
Interface

ICCM/DCCM Memory
Interface

Data Memory Pipeline

LD/ST/Push/Pop
Instructions

*Main Memory
System

*Only present when a data
or instruction cache is
included in the build

Figure 4 Simplified Processor/DCCM Diagram

The DCCM is mapped into the physical memory space and its base address is configurable (refer to
DCCM Base Address, DCCM_BASE_BUILD, for more details). The RAM size of the DCCM can be
configured to be 8, 16, 32, 64, 128, 256 or 512k bytes in size (configuration occurs during the
ARChitect build phase).

In order to determine the DCCM RAM size, the DCCM build configuration register must be
interrogated (auxiliary register 0x074).

All memory operations that fall within the boundaries of the DCCM result in a memory ‘hit’ within
the RAM. The timing behavior of a load or store access into the DCCM is identical to that of a data
cache ‘hit’.

DCCM/ICCM Memory Accesses
There are several destinations for a load or store for builds that contain both an ICCM and DCCM.

• ICCM Access
A load or store memory access that is targeted to hit the memory map between 0x0000 0000 and
the maximum address of the ICCM RAM, results in an access to the ICCM. This is particularly
useful for breakpoint insertion and self-modifiable code.

• DCCM Access
A load or store memory request that lies between 0x100000 and the maximum address of the
DCCM RAM results in an access to the DCCM.

• ICCM Illegal Memory Access
An instruction fetch that occurs outside the physical boundaries of the ICCM results in a memory
exception error.

• DCCM Illegal Memory Access
A load or store memory access that falls beyond the ICCM memory boundary or DCCM memory
boundary results in a memory exception error.

Closely Coupled Memories (CCM) DCCM Build

ARC® 700 Memory Components Reference 13

• Overlapping CCMs with Off-Core Memory
It is possible to map the ICCM and/or the DCCM to a memory region that is also populated by
off-core memory. However, ARC strongly discourage this practice as it can lead to confusing
behavior. For example, if an instruction code fragment is written to the DCCM and the software
subsequently jumps to it, the instruction fetch path will fetch from the off-core memory instead of
the DCCM. This is because the instruction fetch path does not cover the DCCM. If there is no
off-core memory populated in the same region as the DCCM, this triggers a memory error that
signals the instruction fetch is invalid. If this did not occur, the instruction word in the off-core
memory overlapping the DCCM would be fetched and issued to the processor pipeline and this
might not be what the programmer had expected.

• Cache and CCM mixed builds
Builds that contain a mixture of caches and CCM change the behavior of the CPU when accesses
fall outside the physical boundaries of the RAM. In the event that there is a build with an
instruction cache, ICCM, data cache and DCCM, rather than generate a memory exception error
for accesses that fall outside the physical boundaries of the CCM, they are simply passed onto
either the instruction or data cache (depending on the access type, e.g. instruction fetch or
load\store access).
In the event that there is a cache on one interface and CCM on the other, the access that falls
outside the physical boundary of the CCM is presented to the main memory system. For example,
if the build contained an instruction cache and DCCM, but no ICCM or data cache, then any
load\store accesses that fall outside the physical boundaries of the DCCM are presented to main
memory.

Big-Endian Configuration
When the ARC 700 system is configured as a big-endian system the DCCM will operate to provide
the correct data, in big-endian format, to the processor as documented in the ARCompact
Programmer's Reference.

14 ARC® 700 Memory Components Reference

Chapter 4 — Instruction Fetch Queue
The Instruction Fetch Queue allows ARC 700 systems, without an Instruction Cache, to fetch
instructions, through the Island Bridge (BVCI, AHB, AXI or ARC legacy), from external memory.
The Instruction Fetch Queue (IFQ) is often used for boot code or infrequently used code that is not
present in the ICCM.

The processor instruction fetch port is connected, via the Instruction Fetch Queue, to the island
bridge. The IFQ uses a linear pre-fetching scheme to read instructions from memory ahead of
instruction fetches from the ARC 700 pipeline. The Instruction Fetch Queue can be use with or
without an ICCM. See Figure 1.

The IFQ configuration register, IFETCHQUEUE_BUILD, indicates that the Instruction Fetch Queue
is present in a design.

The IFQ incorporates a buffer containing four 64-bit wide entries. Entries in the buffer are always a
linear sequence of pre-fetches from memory. The IFQ logic maintains the buffer by making
individual read requests from memory in 64-bit quantities whenever the buffer is not full. For this
reason, the IFQ is set to be the lowest priority component for the arbiter.

When a new instruction fetch request is received from the ARC 700 pipeline, the address of top entry
in the IFQ buffer is checked against the requested address.

• If the top address matches, the pre-fetched instruction is provided from the IFQ

• If the top address does not match, the entire contents of the IFQ are discarded (including any
pending requests from memory). A new pre-fetch sequence is started at the fetch address
provided by the fetch stage.

Note that no caching is performed - at least one memory request is made for each instruction issued.
Any non-linear changes in the fetch address (a branch for example), will cause the IFQ to be emptied
and re-filled, even if the target address is held somewhere in the IFQ buffer.

Self-modifying code running on the ARC 700 processor should ensure that the IFQ has been emptied
and refilled by executing a SYNC instruction after code in memory is changed. This ensures that any
outstanding memory writes have been completed, and causes a pipeline flush which in turn causes the
IFQ to be emptied.

Breakpoints written through the debug interface will be successfully recognized since all debug
transactions cause pipeline flushes on completion, causing the IFQ to be refilled.

	ARC® 700 Memory Components Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	Introduction
	Block Diagram

	Register Set Details
	Build Configuration Registers
	DCCM Base Address, DCCM_BASE_BUILD, 0x61
	Memory Subsystem Configuration Register, MEMSUBSYS, 0x67
	DCCM RAM Configuration Register, DCCM_BUILD, 0x74
	ICCM Configuration Register, ICCM_BUILD, 0x78
	Instruction Fetch Queue Configuration Register, IFETCHQUEUE_BUILD, 0xFE

	Closely Coupled Memories (CCM)
	ICCM Build
	Instruction Fetch in I-Cache and ICCM Mixed Builds

	DCCM Build
	DCCM/ICCM Memory Accesses
	Big-Endian Configuration

	Instruction Fetch Queue

