ARC® 700 IP Library

ARC

ARC® 700 External Interfaces

Reference

5117-014

ARC® 700 External Interfaces Reference

ARC® International

European Headquarters North American Headquarters
ARC International, 3590 N. First Street, Suite 200
Verulam Point, San Jose, CA 95134 USA
Station Way, Tel. +1 408.437.3400

St Albans, Herts, AL1 5HE, UK Fax +1 408.437.3401
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

www.arc.com

ARC Confidential Information
© 2003-2008 ARC International (Unpublished). Atilts reserved.

Notice

This document, material and/or software contaimgidential and proprietary information of ARC Intational and is protected by
copyright, trade secret, and other state, fedaral,international laws, and may be embodied inntsiiesued or pending. Its receipt or
possession does not convey any rights to use,depeg disclose its contents, or to manufactursethranything it may describe. Reverse
engineering is prohibited, and reproduction, disgte, or use without specific written authorizatddrARC International is strictly
forbidden. ARC and the ARC logotype are trademafl&RC International.

The product described in this manual is licensetlsnld, and may be used only in accordance wittdims of a License Agreement
applicable to it. Use without a License Agreeméntjolation of the License Agreement, or withoatymg the license fee is unlawful.

Every effort is made to make this manual as acewaatpossible. However, ARC International shaletraw liability or responsibility to

any person or entity with respect to any liabilloss, or damage caused or alleged to be causstigior indirectly by this manual,
including but not limited to any interruption ofrgiee, loss of business or anticipated profits, alhdirect, indirect, and consequential
damages resulting from the use of this manual. AR€rnational's entire warranty and liability irspect of use of the product are set forth
in the License Agreement.

ARC International reserves the right to changesthexifications and characteristics of the prodestdbed in this manual, from time to
time, without notice to users. For current inforimaton changes to the product, users should reatréadme" and/or "release notes" that
are contained in the distribution media. Use ofgfaluct is subject to the warranty provisions adred in the License Agreement.

Licensee acknowledges that ARC International isothieer of all Intellectual Property rights in subbcuments and will ensure that an
appropriate notice to that effect appears on aludeents used by Licensee incorporating all or pogtiof this Documentation.

The manual may only be disclosed by Licensee a®rhtbelow.

. Manuals marked "ARC Confidential & Proprietary" mag/ provided to Licensee's subcontractors under NDiAe manual may not
be provided to any other third parties, includingmmfacturers. Examples--source code software ranuger guide, documentation.

. Manuals marked "ARC Confidential* may be providedtibcontractors or manufacturers for use in Lieéraroducts. Examples--
product presentations, masks, non-RTL or non-sdiorceat.

. Manuals marked "Publicly Available" may be incomted into Licensee's documentation with appropARE permission.
Examples--presentations and documentation thabtlembody confidential or proprietary information.

The ARCompact instruction set architecture proaeard the ARChitect configuration tool are coveogdbne or more of the following
U.S. and international patents: U.S. Patent NA§:&547, 6,560,754, 6,718,504 and 6,848,074; TaRaent Nos. 155749, 169646, and
176853; and Chinese Patent Nos. ZL 00808459.9 @8@8260.2. U.S., and international patents pending.

U.S. Government Restricted Rights Legend

Use, duplication or disclosure by the U.S. Goveminie subject to restrictions as set forth in FAR227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Cartgr Software clause at DFARS 252.227-7013 and/emnilar or successor clauses in
the FAR, or the DOD or NASA FAR Supplement.

CONTRACTOR/MANUFACTURER IS ARC International I. Rac., 3590 N. First Street, Suite 200, San Joge9&134.

Trademark Acknowledgments

ARCangel, ARChitect, ARCompact, ARCtangent, HiglC€#, High C++, the MQX Embedded logo, RTCS, and pteg are trademarks
of ARC International. ARC, the ARC logo, High C, Mivare, MQX, MQX Embedded and VTOC are registemdin ARC International.
All other trademarks are the property of their extjwe owners.

5117-014 April-2008

http://www.arc.com/

Contents

Chapter 1 — Introduction

Overview of Interfaces
Block Diagram
Signal Lists

Chapter 2 — JTAG (Joint Test Action Group)
Communication Module
JTAG Interface
JTAG Signal List
JTAG Pin Connector
JTAG Programmer’s Model
The Instruction Register
The JTAG Status Register (Instruction Code 0x8)
The Transaction Command Register (Instruction Code 0x9)
The Address Register (Instruction Code 0xA)
The Data Register (Instruction Code 0xB)
The IDCODE register (instruction code 0xC)
The Bypass Register (Instruction Code 0xF)
The Boundary Scan Register (Instruction Code 0x0 and 0x1)
JTAG Port
The TAP Controller
The TAP Controller State Machine
The Debug Port
The Host Interface to BVCI Target
Setting Up Read/Write Transactions
Setting up a Write Access to the ARC 700 Processor or Memory
Accessing the Status Register
Setting up a Read Access from the ARC 700 Processor or Memory
JTAG Port Reset
PC - JTAG Communications

Chapter 3 — Bus Bridge
Bus Bridge Block Diagram
BVCI Protocol
BVCI Signal List
Bus Bridge Block Diagram
Clock Synchronization Unit

ARC® 700 External Interfaces Reference

9

10
11
11

13

14
15
15
16
17
18
18
19
19
19
20
20
21
21
22
24
24
25
25
26
27
27
28

30

31
31
32
33
33

List of Tables

Toggle Unit 34
Edge Detection 34
Phase Detection 34
Mask Generator 35
Last Phase Detect 35
Clock Crossing BVCI Bridge 37
Chapter 4 — Bus Interfaces 38
Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge) 39
MWIC and Bus Bridge Block Diagram 39
MWIC to Bus Bridge Signal List 39
MWIC Bus Bridge to External Bus System Signal List 40
MWIC Unimplemented Signal List 40
Big-Endian Configuration 41
Interface Timing 41
DMP to Memory Bus System (via Bus Bridge) 42
DMP and Bus Bridge Block Diagram 42
DMP to Bus Bridge Signal List 42
DMP Bus Bridge to External Bus Signal List 43
DMP Unimplemented Signal List 44
Big-Endian Configuration 44
Interface Timing 44
Chapter 5 — Closely Coupled Memories (CCM) 49
Closely Coupled Memories 49
CCM DM Interfaces 49
CCM DM Signal List 50
Interface Reset State 51
CCM DMI Behavior 51
Chapter 6 — XY Memory 56
XY Memory 57
XY DMl interface 57
XY DMI Signal List 57
Interface Reset State 58
XY DMI Behavior 58
Chapter 7 — Processor Signals 63
Processor Control Interface 63
Processor Signal List 63
Clocks 63
Reset 64
Start 64
Run 64
Interrupt Unit 64

iv ARC® 700 External Interfaces Reference

Overview of Interfaces

Feature List 65
Interrupt Signal List 65
Incoming Request Interface Timing 65
Test 66
Test Signal List 66

ARC® 700 External Interfaces Reference v

List of Figures

Figure 1 Example External Bus System ArchiteCturecooovvvviiiiii e 11
Figure 2 The JTAG Communications ModUIE.................uuiiiiiiiiiiiee e 15
Figure 3 Recommended JTAG Pin Connector, TOP VIEW.......cooeiiiiiiiiiiiiiieeeeeeeeeei e 16
Figure 4 Data Registers Access via the Instruction Registerccccceeiiiiiiiiiiiiiiiiiieeeee, 17
Figure 5 A JTAG Port with an ARC 700 PrOoCESSOIuuuuiiiiieeieieeiiiis e eeeeen e eeaeaans 21
Figure 6 Internal Structure of the JTAG POItoooviiiiiiiiiiii 22
Figure 7 TAP Controller State DIagramMcceeiiiiiiiiiiiiiiiiiiiieeee et 22
Figure 8 Loading Data into the Shift REQISter..........ccovveiiiiii e 24
Figure 9 Internal Structure of the Host Interface to BVCI Target Module............ccccceeeeeee. 25
Figure 10 Loading the INStruction REQISIENciiii i 26
Figure 11 Loading the Data REQISIEN..........couuiueiiii e eaeeeans 26
Figure 12 Loading the Instruction Register (Select Address Register).........cccccvvvceeiieeennne, 27
Figure 13 Example of a Typical ARC 700 SYSIEMccoiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 31
Figure 14 Bus Bridge Structure (IBUS)cooiiiiiiiiiiiiiiie e 33
Figure 15 Design of the CKSYN ... e e 34
Figure 16 CKSYN Timing Diagram at 4:1 Clock Ratio.............cccovieviiiiiiiiiieeieeci e, 35
Figure 17 CKSYN Timing Diagram at 3:1 CIoCK RatIO..........ccceviviiiiiiiiiiiiiiiiiie 35
Figure 18 CKSYN Timing Diagram at 2:1 Clock Ratio.............cccovvvivviiiiiiiiiiiiecie e 36
Figure 19 CKSYN Timing Diagram at 1:1 Clock Ratio............cccovvvvviiiiiiiiiieeiiecece e 36
Figure 20 Design of the CBRI - Resets NOt SNOWNcoovviiiiiiiiiiiii 37
Figure 21 Instruction Cache tO IBUSoooiiiiii e e e e e 39
Figure 22 MWIC Target Interface Read ACCESSoovevviuiiiiiii e 41
Figure 23 DMP 0 IBUS INTEITACEeiviiiiiiiiiiiiiiiiieiieieeeeeee ettt 42
Figure 24 Single Cell Packet REAA ACCESScoeviiiiiiiiiiiiiiiiiie e 45
Figure 25 Single Cell Packet Write Access on BVCI Target Interface between DMP and
IBUS ettt ettt et e e et e e e e e ettt e e e e e e e e e a et e e e e e e e e annnnes 46
Figure 26 Burst of 4 Cell Packet Read Access on BVCI Target Interface between DMP and
IBUS ettt ettt et e e et e e e e e ettt e e e e e e e e e a et e e e e e e e e annnnes 46
Figure 27 Burst of 4 Cell Packet Write Access on BVCI Target Interface between DMP and
BU S 48

ARC® 700 External Interfaces Reference Vi

Overview of Interfaces

Figure 28 Locked Read Access followed by Single Write Access on BVCI Target Interface

between DMP and IBUS ... e 48
Figure 29 ICCM and DCCM Configuration Example..............ceoiiiiriiiiiiiie e 49
Figure 30 Read Burst on the CCM Burst INterfaceooevvieiiiiiieiiiiece e 52
Figure 31 Single Cell Read Operation on the CCM DMI.........cccooiiiiiiiiiiiiiiiiieeeeeeee 53
Figure 32 Write Burst Operation to the CCM DMI.........cooiiiiiiiiiiiieee e 54
Figure 33 Single Cell Write Operation onthe CCM DMIccooiiiiiiiiiiiiiiiieeeeeee 55
Figure 34 Read Burst Access on XY Memory DML, ... 59
Figure 35 Single Read Access on XY Memory DML.........coooiiiiiiii 60
Figure 36 Burst Write ACCESS 0N XY DMI ..o 61
Figure 37 Single Write ACCESS ON XY DMIooooiiiiiiii i 62
Figure 38 Interrupt INterfaCe ..o 64
Figure 39 Example Level TYPe INeITUPL.......cooiiieii e 65
Figure 40 Example Pulse Type INtEITUPLooeiiiiiiii e 66

ARC® 700 External Interfaces Reference Vii

List of Tables

Table 1 JTAG Signal List 15
Table 2 JTAG Pin Connector Descriptions 16
Table 3 JTAG Registers 16
Table 4 JTAG Read/Write Transactions 18
Table 5 Instructions that Employ the Boundary Scan Register 20
Table 6 Non Implemented Instructions 21
Table 7 JTAG Port Signals 28
Table 8 BVCI Signal List 32
Table 9 MWIC to IBUS Interface 39
Table 10 Bus Bridge to External Memory System 40
Table 11 Unimplemented BVCI Interface Signals on the MWIC to IBUS Interface or IBUS to
External Memory 40
Table 12 DMP to IBUS Interface 42
Table 13 Bus Bridge to Memory Bus System 43
Table 14 Unimplemented BVCI Interface Signals 44
Table 15 DCCM Direct Memory Interface (DMI) 50
Table 16 XY DMI Interface Signals 57
Table 17 Processor Control Signal List 63
Table 18 Configurable Interrupt Lines 65
Table 19 Test Signal List 66

ARC® 700 External Interfaces Reference viii

Chapter 1 — Introduction

An ARC® 700 processor based design supports a number of processor islancestétiase
interfaces encompass memory transactions, host debug access aldnameecontrol. The
following sections introduce the interfaces in more detail:

e Qverview of Interfaces
* Block Diagram
e Signal Lists

9 ARC® 700 External Interfaces Reference

Overview of Interfaces Introduction

Overview of Interfaces

A given ARC® 700 design offers several processor island interfaceseTifiterfaces encompass
memory transactions, host debug access and miscellaneous control.

Interfacing to the processor is achieved mainly indirectly through ttenvioly components.
» JTAG communications module

» Bus Bridge
* Bus Interfaces

» Closely Coupled Memory Direct Memory Interface (DMI)

» XY Memory Direct Memory Interface (DMI)

» Control Signals (Clock, Reset, etc)

* Interrupt Unit

* Memory Management Unit (MMU) — as described inARC 700 MMU Reference

The processor island is the top-level processor island that shouldd®usgegration into a custom
system. For additional information on alternative CPU Island interfaesHB Bus Bridge
ReferenceAXI Bus Bridge ReferencandARC Legacy Bus Bridge Reference

For further information on the operation of the processor corARE®mpact Programmer's
Reference

For information on the processor module hierarchy seARt@ 700 System Reference

10 ARC® 700 External Interfaces Reference

Introduction Block Diagram

Block Diagram

Example Processor Island Configuration

ARC 700 Core

Instruction Data Memory XY
Fetch Pipeline Memory

(I-Cache, (D-Cache, DCCM)

ICCM, IFQ)

64-bit Buses |

- Internal Bus

.........

’ 64-bit

System BVCI Arbiter SyStem Bus

E

Memory Controller Conversion
Bridge

I

SSRAM Peripheral BVCI
Arbiter

32-bit BVCI Peripheral Bus

64-bit Memory Bus

Figure 1 Example External Bus System Architecture

Signal Lists

Various groups of interface signals may appear on the CPU Island.|Bwerfg signal lists provide
more detail on these signal groups:

* JTAG Signal List

+ BVCI Signal List

 MWIC Bus Bridge to External Bus System Signal List
+ DMP Bus Bridge to External Bus Signal List

« CCM DMI Signal List

» XY DMI Signal List

e Processor Signal List

ARC® 700 External Interfaces Reference 11

Signal Lists Introduction

e Interrupt Signal List
e Test Signal List

12 ARC® 700 External Interfaces Reference

Chapter 2 — JTAG (Joint Test Action Group)
Communication Module

The JTAG interface has been introduced as a solution for communicatintdhe/standard ARC 700
and ARCangel systems.

The JTAG module draws its interface and protocol from the IEEE STD 1149.idipgpoustomers
with a standard that is universally recognized. The module contains logiecrfonunicating with the
ARC 700 processor and its memory system, providing the host with a highdievetere
transaction parameters are simply specified.

The following subsections outline principles required in order to communictitéhgi ARC 700
processor and system memory via the JTAG module:

e JTAG Interface
e JTAG Programmer’s Model
e JTAG Port

e Setting Up Read/Write Transactions
e JTAG Port Reset
e PC -JTAG Communications

13 ARC® 700 External Interfaces Reference

JTAG Interface JTAG (Joint Test Action Group) Communication Module

JTAG Interface

The host device communicates with the JTAG module via four interfacessigmede four interface
signals are required in order to satisfy the IEEE STD 1149.1 standaré. imtezface signals provide
the host with the ability to control and serially pass data in and out of the métabe signals are
shown below:

« TCK — Test Clock

« TMS — Test Mode Select
« TDI — Test Data In

« TDO — Test Data Out

An optional JTAG interface signal, Test ResSER$T*) has been provided to allow asynchronous
initialization of the JTAG port without supplying a clock. Its use isessary in simulation, but in
actual operation it may be tied high. In addition, there is a chip-levelsigt specified by the IEEE
standard: RTCK. This is a copy of TCK that has been re-driven in the I/Gngadf the JITAG
emulator chooses to take advantage of it, by using it to clock in TD@, dorapensate for the cable,
board, and I/O pad delays to increase the speed at which TCK may be run. dhisdbespecially
important if many chips are chained together on the board.

The module provides various groups of interface signals.

» TheMemory Arbitrator Interface: The first group interfaces to the memory arbitrator (refer to
the ARC 700 System Components Refeneaice allows the module to access system memory.

« ARC 700 Host Interface: The second group drives the ARC 700 host interface bus, providing
essential access to the ARC 700 processor's internal regiater. s

» Boundary Scan interface: The third group of signals have been provided in order to allow the
inclusion of a Boundary Scan Register. Refeftte Boundary Scan Register (Instruction Code
0x0 and Ox1¥or a detailed explanation. While this capability remains, the ARCITAG port
has been designed to allow on-chip chaining with other TAP controllers. It imayggan easier
integration with ATPG flow to use the TAP controller produced by the ATé&#are, and chain
it with that of the ARC 700.

» Miscellaneous signals: The final group of signals are provided for system control:

O A processor clock signal is provided allowing the module to carry out rebarite
transactions to the devices that are synchronized tartleessor clockThe JTAG clock,
TCK, is designed to run at maximum frequency is 50% of the processor lddéTKL
simulation the ratio afystem clocko processor clock may affect the maximum frequency of
TCK. In silicon there are additional timing constraints, for examplenteftom the
transition on the input JTAG clock to the output of JTAG TDO must be alldare

OO A system clear signal is included allowing the module to be regatf@®nously with all
devices in the system.

[0 An output enable signajitag_tdo_zen_n, is provided allowing the outpdiDOto go high
impedance when inactive. Tri-state is provided for the case ofglaratinection of the other
driving circuitry toTDO. ShouldTDO not be connected to any other driving circuitry, the tri-
state output need not be implemented.

14 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Interface

O The JTAG busy signaj,tag_busy, can be used to provide a helpful indication that there is
activity on the debug channel, for example to drive an LED on a development baentd. If
required, this signal can be left open.

Figure 2 illustrates the signals that make up the JTAG module.

PROCESSOR CK

SYSTEM CLR »

Menory
TRST* —— Arbiter
Interface
Host device

signals TCK >
D — JTAG
™S Module

JTAG TDO ZENN
Host
Boundary ! g? erf Iace
Scan i gnal s
Signal s

Figure 2 The JTAG Communications Module

TheTMs input interface signal should be connected to a pull up component as part of thellEEE S
1149.1 requirement, thus allowing the module to be reset if the inpiMas undefined (for

example high impedance) am@K is applied. Pull-ups are not required 7@l , TDOor TCK. The
reset mechanism is describedrime TAP Controller State Machine

JTAG Signal List

The following JTAG interface signals may appear on the CPU Island:
Table 1 JTAG Signal List

Signal Direction Description

jtag_tdi Input JTAG data input

jtag_tms Input JTAG mode select

jtag_tck Input JTAG clock

jtag_trst_n Input JTAG reset

jtag_tdo Output JTAG data output
jtag_tdo_zen_n Qutput JTAG TDO output enable signal
jtag_rtck Output JTAG re-timed clock

jtag_busy Output JTAG busy signal

JTAG Pin Connector

This is the recommended board connector to attach a debug emulator to @eidiiéls on the
board. It is a 20-pin IDC connector, with pins on 0.100” centers, keyed and shrouded.

ARC® 700 External Interfaces Reference 15

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

VTref 1002 Vsupply
TRST* 30 04 GND
TDI 50 @6 GND
T™MS 70 @38 GND
TCK 9@ @10 | GND
RTCK ll® @12 GND

TDO 130 014 GND

(leave open) 15@ @16 GND
(leave open) 170 @18 GND
(leave open) 190 @20 GND

Figure 3 Recommended JTAG Pin Connector, Top View

Table 2 JTAG Pin Connector Descriptions

Signal Description and Notes

TCK Clock input to debug port. Must be pulled to defined state on board for so as
not to clock circuitry when no debug emulator is connected.

RTCK Clock output. If not implemented on chip, drive from TCK on board.

™S Test Mode Select input. Must be pulled up on board.

D1 Test Data In input. Must be pulled up on board.

TDO Test Data Out output. Must be pulled up on board.

TRST* Test Reset. Must be pulled up on board.

viref Target Reference Voltage. Should be tied to Vdd of chip.

Vsupply Supply voltage for emulator pod. Should be tied to Vdd of chip.

GND Ground. Tie to Vss of chip.

While it is not necessary, the speed of the JTAG debug connection can beézea@ximDO and
RTCK use drivers capable of driving 50-Ohm transmission lines.

JTAG Programmer’s Model

The JTAG module includes eight internal registers as shown in Table Bo$tean define a read or
write transaction to a memory location or an ARC 700 register throughafdimese internal
registers. Six of the eight registers are collectively reteto as data registers (IEEE STD 1149.1).
The remaining registers are the instruction register, whiobnsa in the role of accessing all data
registers and the Boundary Scan register.

Table 3 JTAG Registers

Value Code JTAG Register TYPE

N/A N/A INSTRUCTION REGISTER* Instruction
0x8 1000 JTAG STATUS REGISTER Data
0x9 1001 TRANSACTION COMMAND REGISTER Data
OxA 1010 ADDRESS REGISTER Data
OxB 1011 DATA REGISTER Data

0xC 1100 IDCODE REGISTER Data
OxF 1111 BYPASS REGISTER* Data
0x0/0x1 0000/0001 BOUNDARY SCAN REGISTER* BSR

16 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Programmer’s Model

NOTE * Required as part of IEEE STD 1149.1 specification.

Each of the registers are described in the following sections:
e The Instruction Register
 The JTAG Status Reqister (Instruction Code 0x8)

e The Transaction Command Redister (Instruction Code 0x9)

* The Address Register (Instruction Code 0xA)

e The Data Reqister (Instruction Code 0OxB)
* The IDCODE register (instruction code 0xC)

» The Bypass Reqister (Instruction Code 0xF)

 The Boundary Scan Reqister (Instruction Code 0x0 and 0x1)

The Instruction Register

The Instruction register is used to gain access to all data regisiehsd&a register is addressed by a
unique 4-bit instruction code.

31 4 3 2 1 0

Reserved Inst Code

In order to access the required data register, the correct code shoulttdreinto the instruction
register. Figure 4 illustrates the relationship between the itisiniand data registers. The instruction
shift register is loaded with Ox1 in Capture-IR, so that externaliciycby looking for a transition
when in Shift-IR, can detect a stuck-at fault in the JTAG chain.

NOTE Because of this behavior, which is specified in IEEE 1149.1, the current contents of the instruction
register can not be read by the external circuitry. The register itself is initialized to point to the
IDCODE register in Test-Logic-Reset.

Write Date
Bus

N

IINSTRUCTION REGISTER 1

VEO —>| DATA REGISTER 1 |+\
Write enable signa v N N
decoded from thes VEL —>| DATA REGISTER 2 | PATH| , , Read Dat
i i | MUX Bus
Instruction Register| v
N
VE2 —>| DATA REGISTER 3 |+
| . 2

Figure 4 Data Registers Access via the Instruction Register

In addition to accessing the data registers (refer to subsettiensTAG Status Register (Instruction
Code 0x8)o The Bypass Register (Instruction Code QxH)e instruction register is also used to
select a test sequence that should be applied to the device. Thesguesices use a special data
register known as the Boundary Scan Register (refEneécBoundary Scan Register (Instruction
Code 0x0 and 0x])

ARC® 700 External Interfaces Reference 17

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

The JTAG Status Register (Instruction Code 0x8)

The JTAG Status Register is read only and is used by the host device namptitant information
on the state of the JTAG module or the result of an ARC 700 processor oryraaoess. The bits
of the register are assigned as follows.

31 4 3 2 1 0

Reserved PCIRD|FL|[ST

31 24 23 4 3 2 1 0

Each field in the JTAG Status register reflects the followingrimé&tion:
+ Bit 0 — Stalled (ST) flag indicates that the current transactisrstadled. This flag is set when

the ARC 700 processor assertshiod d _host signal to lengthen the duration of a read or write

transaction.

» Bit 1 - Failure (FL) flag indicates that a read (or write) hasdailben it is true. For example,
this flag would be set if an access to a core register is attempggdtiMdprocessor is running.
The failure flag is cleared automatically when a new transactioartedt

» Bit 2 — Ready (RD) flag indicates whether the JTAG module is availal@decept another
transaction command. This flag is set when a transaction has just aahgiethen the JTAG
module is idle.

 Bit3-PC_SEL (PC) flag, is set to the value that is assigned fdXKePCPORT auxiliary
register (refer to the Extension Functions section ilAfR€angel development board marual
For example, this flag would be setlifvas written to thUX_PCPORT auxiliary register, and
cleared if0 was written tcAUX PCPORT.

« Bits 31 down to 24 — Reserved.

The Transaction Command Register (Instruction Code 0x9)

The Transaction Command Register is used to specify the communicatiocticandeat should be
performed.

31 4 3 0

Reserved Command

The JTAG module supports eight different accesses or transactidol,ash shown in Table 4 with
their associated encoding.

Table 4 JTAG Read/Write Transactions

Value Code Communication Transaction

0x0 0000 Write to a memory location

0x1 0001 Write to a ARC 700 core register

0x2 0010 Write to a ARC 700 auxiliary register

0x3 0011 NOP, The register is initialized to this value
0x4 0100 Read from a memory location

0x5 0101 Read from a ARC 700 core register

0x6 0110 Read from a ARC 700 auxiliary register

18 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Programmer’s Model

Value Code Communication Transaction
0x7 0111 Write to a MADI* register
0x8 1111 Read from a MADI* register

NOTE The MADI register is only available where the debugging of multiple ARC 700 processor systems is
required. The MADI system is no longer the recommended way of debugging multiple cores on a
chip. ARC now recommends that each processor have its own JTAG port, and that these be chained
together by distributing TCK, TMS, and TRST* in parallel, and connecting the TDO from one
processor to the TDI of the next.

The Address Register (Instruction Code 0xA)

The Address Register is used to supply the address for read and wraettoassto the ARC 700
registers and system memory.

31 0

Address Register

Accesses to memory must always be given in bytes. Access to the AR@er0al registers is
specified by their register numbers. The value contained in thiseregistutomatically incremented
by four (a memory access) or one (an ARC 700 register access) when aweisel toansaction has
completed. This feature is used to save valuable cycle time whencdaling / uploading a stream of
data, hence the register does not need to be rewritten with the nexsaddines

The Data Register (Instruction Code 0xB)

The data register performstwo functions. When data is written to tisder it is placed into a write
buffer that drives two write data buses, one for the ARC 700 host interfacéhandoo the memory
arbitrator interface. The bus is used to specify the data contah&hthuld be written when
performing a write transaction.

31 0

Address Register

When reading this register a read buffer is selected. The read isufé®ed to store data retrieved
from the target device during a read transaction. The appropridtdatabus (arbitrator or host
interface) is selected according to which device the host is accessing.

The IDCODE register (instruction code 0xC)
The IDCODE register is used by the JTAG emulator to identify the scsi@ ARC 700 core.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

JTAG
Version

ARC Number ARC Type ARC JEDEC Manufacturer's Code| 1

Each field in the IDCODE register reflects the following inforiwrat

e Bits 31 down to 28 — These bits define the version of the JTAG module. Currentitythe
value Ox1.

» Bits 27 down to 18 — This field will be set by the designer to the number of ARC pooses
swithin the system. It will have the same value as the correspongliddgnfithe IDENTITY
register in auxiliary space, if there are fewer than 256 ARC processthe system.

ARC® 700 External Interfaces Reference 19

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

e Bits 17 down to 12 — This field will be set to 0x03 to identify the processor gypa ARC 700
type.

* Bits 11 down to 1 — This field contains the code assigned to ARC InternatiodBDEC,
encoded as specified in the IEEE 1149.1-2001 standard. ARC has been assigned the
manufacturer’s code 0x58 in group five, so this field encodes to 0100 101 1000.

» Bit 0 — This field is fixed at 1, as specified in the IEEE 1149.1-2001 standardsTused,
along with the previous field, to allow automatic discovery when the chaiitialized. JEDEC
will never assign the manufacturer’s code 0x7F in group 0. The JTAG emuiterefore, can
shift the 32-bit IDCODE 0x000000FF into TDI at the beginning of the chain aftet.rThe
standard specifies that upon receiving a TCK when in the Reset-dgiststate, the instruction
register will be initialized to point to the IDCODE register if itstg, and to the BYPASS register
otherwise. In Capture-DR, the shift register is loaded with this 32-bititd€ODE is in the
instruction register, and with a single bit of O if BYPASS is. Thus thereadteircuitry can
examine TDO in Shift-DR, and know if it's zero that this TAP congratlas only a 1-bit bypass
register, and if it's one that this TAP controller has a 32EB@@ODE register. By shifting through
looking for these until the 0OxOO0000FF appears, the emulator can uniquely ideatifyrhber
and kind of devices in the chain.

The Bypass Register (Instruction Code 0xF)
The Bypass Register is required as part of the IEEE STD 1149.1 standard.

31 1 0

Reserved BP

When this register is selected, the serial data infdit)is connected to the serial data out{duiR®)
through this register. The data ©Bl is passed tdDOon the rising edge of the JTAG clotkK
when in Shift-DR, and the register is initialized to 0 in Capture-DRIl iitzer states, the data in this
register is held.. The Bypass register is automatically seledhen a reset is applied to the JTAG
module allowing the data ofDI to bypass the core logic T®O.

The Boundary Scan Register (Instruction Code O0x0 an d Ox1)

The Boundary Scan register is selected when the four-bitG@@@ or 0001 is written into the
Instruction register. This register is used to retrieve the letgite of a device and control data on its
input and output pins. The register does not exist within the module and must loeg@externally
(it is connected to the JTAG module via the boundary scan interface). dés06®0 and0001
relate to theEXTEST andSAVPLE/ PRELOAD instructions as shown in Table 5. These boundary
scan instructions are necessary as part of the IEEE STD 1149.1. ReteAmptication Note
'Interfacing the JTAG Module to a Boundary Scan Register' for more.detail

NOTE Since the ARC 700 TAP controller may be chained on the chip with other TAP controllers, use of a
separate TAP controller known to be compatible with the user’s test software is recommended.

Table 5 Instructions that Employ the Boundary Scan Register

Value Code Instruction
0x0 0000 EXTEST
Oox1 0001 SAMPLE/PRELOAD

The instructions contained in Table 6 have also been defined in the IEEE STD. Tlese are
optional instructions and are not supported with version 1.0 of the JTAG module.

20 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Port

Table 6 Non Implemented Instructions

Instruction Description

INTEST Performs an internal test (uses the boundary scan registe
RUNBIST Runs an internal core logic test (additional logic)
USERCODE Captures user defined information about a device (addlibgrc)

JTAG Port

The block diagram shown in Figure 5 shows how the JTAG communications pgratetewithin an
ARC 700 system. It is linked to the host interface of the ARC 700 procesaddition to system
memory via the Data Memory Pipeline (DMP).

ARC 700
Processor

To the Hos TDI—p
TMs—p| PORT
TDO 4¢—

Data Memory
Pipeline (DMP)

TRST* ———p <:::> Host
TCK—p Interface
JTAG

Figure 5 A JTAG Port with an ARC 700 Processor
e The TAP Controller
e The TAP Controller State Machine

e The Debug Port
e The Host Interface to BVCI Target

The TAP Controller

The Test Access Port (TAP) controller is central to the oparaf the JTAG module as shown in
Figure 6. All internal register accesses are performed seugilyg the TAP controller. An
accompanying block, the Debug Port, serves as the workhorse, performs thigy wisijaternal
(accessing internal JTAG registers) and external (performinglBAdnsactions) tasks. The Debug
Port and the TAP Controller are clocked off of TCK, and a separate mguiglersnizes the BVCI
initiator signals to the system clock. On the other side of the B\BUD Interface, there is a module
that contains the address, data, command, and status registers, and hamdissinterface and

DMP transactions: the Host Interface to BVCI Target module. Thog/althe user, if desired, to
replace the JTAG port, either by a custom interface to an external éebagtp another processor in
a master/slave configuration..

ARC® 700 External Interfaces Reference 21

JTAG Port JTAG (Joint Test Action Group) Communication Module

JTAG Port

! I
. > ! |
TRST TAP FSM | |
TCK ——— i
Tothe state mfci BVCI Data | |
Host | TP ——————#=I TAP Controller Debug Port 4—|| :—} Host

TMS ———» | | Interface
TDO «——— : |
Bvcl |

Address & : Debug ! Host
| Interface to
Command | Inter-
v P | BVCI Target
BVCI | face |
Address, | |
Commare, | — ow
System Clock
Sync |)

|
! |
| I
! |

Figure 6 Internal Structure of the JTAG Port

The TAP controller is an internal state machine that is condreliirely by the host using tAd&/5
andTCK interface signals. The controller is used to indirectly it@mmunication transactions and
access the internal JTAG registers. The state machine confsi®t states that are connected together
as shown in Figure 7.

The TAP Controller State Machine

Test-Logic-Reset

TMS=|

0[:[Run-Test/Idle II Select-DR-Scan
A / 0

Select-IR-Scan

0

Exit2-IR
|
Update-IR

Figure 7 TAP Controller State Diagram

Each state contains at least one entry point with two possible exst pastate transition is
performed on the rising edge BEK. The decision to determine the exit path is made according to the
logic level of TIVS.

22 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Port

TheTest - Logi c- Reset state is used to initialize all internal JTAG registers andgrabsignals
to default contents and inactive logic levels respectively. Tdte & entered immediately when
TRST* is asserted. In addition, this state can also be entered (regafdlessurrent state) at any
time during operation by holdinGVs high and applying a maximum of five clock pulsesT@i.

TheRun- Test/ | dl e state always precedes fhest - Logi c- Reset , Updat e- DRand

Updat e- | Rstates on the rising edge &K whenTMsS is low. This state is employed to initiate a
read/write access or place the JTAG module in the idle statee@tievrite access defined by the
address, data and command registers only occurs once on eRiry-tbest / 1 dl e.

The remaining section of the state diagram (in Figure 7) containstate sequence structures that
are used to access all internal JTAG registers. Registerigecwritten to or read from serially using
theTDI andTDOsignals along with the aforementionEGK andTMsS signals. Both structures are
identical, however, as denoted by the mnemonics IR and DR, one structurtis aseess the
instruction register and the other dedicated solely to accessing aledesters.

An internal JTAG register is accessed by placing the TAP contiottethe appropriate scan
structure Bel ect - DR- Scan or Sel ect -1 R- Scan). The data contents of the selected register
are loaded into a shift register in tBapt ur e- xR state. The state is then entered from the

Sel ect - xR- Scan state by pullingfrVs low and applying a clock pulse @itK. Capture occurs
when theCapt ur e- xR state is exited.

The shift register is used to shift data into the chain ff@in (write phase) simultaneously shifting
data out of the chain aiDO (read phase).

By holding TMS low and applying a second clock pulseTdK the TAP controller goes into the
Shi f t - xR state. The Tap Controller remains in 8fe f t - xR state wheMMsS is held low. This
state allows data to be loaded serially (least significant bij firto the shift register. THEDI signal
is always sampled on the rising of edgd 6K, starting on the second entry into &f@ f t - xR
state. The data shifted out is placedT@® on the falling edge ofCK starting on the first entry into
theShi f t - xR state. The last sample ®DI is always performed when exiting tBhi f t - XR
state. For instance, when the instruction register contains the BYiRaiB&:tion, a O is loaded into
the 1-bit bypass register on the clock that eRitpt ur e- DR and entershi f t - DR. At this point,
the O will appear on TDO. On the next clock, TDI will appear on TDO, and dateontinue to be
shifted through until the final TDI is shifted to TDO on the clock whiclsestii f t - DR and enters
Exit 1- DR

When the data is finally shifted in or out of the shift register, tleetsel JTAG register is updated
with the shift register contents when the TAP controller isqalacto theUpdat e- xR state.
Updating occurs on the falling edgeT@@K after the state is entered.

The remaining statd2ause- xR andExi t 2- xR are used to stall the shift process if the data to be
shifted in cannot be presented in time for the next rising edg€lofassuming a continuous
frequency onTCK).

ARC® 700 External Interfaces Reference 23

JTAG Port JTAG (Joint Test Action Group) Communication Module

Captures the code ‘1001’
into the shift regist

after the falling edgie)
| |

i
i
f f y
SHIFT-IR-STATE | X EXIT1-IR |
T
i
i

TDC XXX) HIGH IMP FDENCE

\

|

|

|

|
— _
Shift Data on rising edge of TCK

Figure 8 Loading Data into the Shift Register

The timing diagram in Figure 8 illustrates the concept of shiftingidaiahe shift register using

TCK, TM5 & TDI . The diagram illustrates the host device writing to the instructiosteegvith the
four-bit value1010, thus selecting the Address register. In the capture stage the fouubid®a1

is loaded into the shift register ready to be shifted out. The instnu&gister is not updated (and the
Address register is not selected) with the shift register contenitsharipdat e- | R state is entered.
Following theUpdat e- | R state theSel ect - DR- Scan state structure is entered to access the
Address register.

During theCapt ur e- | R phase the four-bit valug01 is always loaded into the shift register,
regardless of the instruction register contents. The firstaast ksignificant bits aid in diagnosing
faults along the IEEE 1149.1-1990 bus.

The Debug Port

The debug port module contains all the registers specific to the JT&@o#. This includes the
instruction and data shift registers, the instruction register iteelfyypass register, and the IDCODE
register. It also contains a restricted BVCI initiator, which, imjwaction with the system clock
synchronization module, is responsible for access to the address, da&ctioea command, and
status registers, and for initiation of read and write accessagsttbe stressed that the debug BVCI
interface is completely separate from the memory BVCI interfdtesaddress space of the debug
BVClI interface contains only six valid addresses in its stock canaigpn: the addresses of the
address, data, transaction command, and status registers, along withdialceslaltesses which,
when written with any data, cause the read/write access to be initiat¢idesaddress, data, and
command registers to be reset, respectively.

The Host Interface to BVCI Target

The address, data, status, and transaction command registers are to be feuhdshitterface to
BVCI target module (as shown in Figure 9). It contains a state machind, pérforms all read and
write bus transactions that are supported by the JTAG module. Thiwidipg there is a valid code
in the Transaction Command register; an access is initiated diggthe TAP controller into the
Run- Test / | dl e state, which causes the debug port to write the do_cmd address on the BVCI
interface. This request is then fed to the state machine. The sahisdelsponsible for verifying

24 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module Setting Up Read/Write Transactions

transaction requests and providing the mechanism that allows the hostateliibe JTAG module
to maintain a strict synchronizing relationship.

I Host Interface to BVCI Taurget_I

|
I Address, I

Data, and
Debug I Corr?mznnd I
BVCI 4—P| Registers I
|

Interface : |

I State
Machine ARC 60C
I Interface

shodler | g <;I':>DMP
-

Figure 9 Internal Structure of the Host Interfacet o BVCI Target Module

The scheduler verifies a transaction request from the host devicediynththe value contained in
the Transaction Command register. The transaction request sigrsrgd®nly when the
Transaction Command register contains a valid code and a write to the daldreskabccurs on the
debug BVCI interface. The scheduler asserts a transaction requestasigtart the defined bus
transaction. The BVCI target always responds to all commands in a Gjetge It is the
responsibility of the debugger to maintain synchronization by polling thesseygister for the
READY bit after an access has been started.

Setting Up Read/Write Transactions

A guide through the stages of defining and initiating read and write ascesse

e Setting up a Write Access to the ARC 700 Processor or Memory

e Accessing the Status Register

e Setting up a Read Access from the ARC 700 Processor or Memory

Setting up a Write Access to the ARC 700 Processor or Memory

A write access requires placing the TAP controller intoTihgt - Logi c- Reset state. This should
reset the JTAG module. This initializes all the internal JTA@sters to default values and all

interface control signals to inactive logic levels. Thidatidation process is performed by asserting
TRST* or by holdingTMs high and applying a maximum of five clock pulsesT@. This will

ensure that when tHeun- Test / | dl e state is entered a bus transaction is not triggered from a valid
code already contained in the Transaction Command register.

The reset procedure is not required for every read and write aandds performed only when there
has been a system reset. The next stage is to set-up the transaatisetgraregisters. These include
the Address register, Data register and the Transaction Commastemegi

The contents of the Address and Data registers are loaded with the agtpregities so that the write
access can be performed on the ARC 700 processor or to memory. Firstlytrtletiamsregister is
loaded with the code for accessing the Data register. This is accordfliskatering th&el ect -

I R- Scan state and updating the Instruction register. Then the ot for the Data register is

ARC® 700 External Interfaces Reference 25

Setting Up Read/Write Transactions JTAG (Joint Test Action Group) Communication Module

serially loaded in th&HI FT- | R state. The timing diagram for writing the instruction registehn wit
the codel011 which selects the Data register is shown in Figure 10.

Ry B Y A AN A BN AR AR U RN B
™
TAP SELECT-IR- VcAPTURE-IR SHIFT-IR-STATE EXITL-IR Y UPDATE-IR Y SELECT-DR
STATE SCAN SCAN
Tl X X
00 HIGH IMPEDENCE /

!

|

Figure 10 Loading the Instruction Register
X =Don't care, Z = high impedance

TheSel ect - DR- Scan state is then selected to serially load in the data to be employedwsitthe
data bus when write access is performed. This is shown in the timingrdiagFigure 11.

N U U AU el U sl
N

™S

TAP SELECT-DR- SELECT-DR
STATE ’ SCAN CAPTURE-DR SHIFT-DR-STATE EXIT1-DR UPDATE-IR SCAN

I X) X

HIGH IMPEDENCE [

T

i /v
The 32-bit data is being serially loaded
into the Data Register.

TDC

Figure 11 Loading the Data Register

The Address register is now accessed by loading theldib@ into the instruction register. We then
enter theSel ect - DR- Scan state structure and serially load in the data to be used on the address
bus.

The last stage involves writing the Transaction Command registetheitcode instructing the JTAG
module to perform a write transaction to either the memory or the ARC 70teregis

Once all the transaction parameters have been setup, the writettoemisastarted by placing the

TAP controller into thdrun- Test / | dl e state.

To obtain information about the transaction, the JTAG Status regigtecessed. Since this is a read
only register the signal supplied @@l is ignored when the register contents are shifted out through
TDO. The appropriate bit fields are then checked to verify a writegcéina was performed.

Accessing the Status Register

The JTAG Status register is accessed in the following way, théitiia the Status register (refer to
The JTAG Status Register (Instruction Code 0x8)) is shifted out to detewhether the JTAG
module has been stalled. If the stalled bit is set, theBehect - DR- Scan state structure is exited
and returned to later. This happens if a requested transaction is alreadyaynder

26 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module JTAG Port Reset

If the JTAG module is not stalled, then the second bit is shifted out ofdhes $egister to determine
whether that transaction has failed. If the failed bit is set theBghect - DR- Scan state structure
is exited.

If the failed bit is not set then the ready bit is shifted out to detenwiie¢her the transaction has
completed or not. If the ready bit is set, then the transaction has finishedamwdransaction can be
started. If it has not been set, then$e¢ ect - DR- Scan state structure is exited and the above
procedure is repeated.

ThePC_SEL is an optional bit that does not need to be shifted out.

Setting up a Read Access from the ARC 700 Processor or Memory
Setting up a read transaction follows almost the same procedurerss et write transaction.

The Address register is accessed by writing the 4 bit £6d@ into the instruction register.
Sel ect - | R- Scan state structure is selected and the cdoie0 is serially loaded. When the
Updat e- | Rstate is entered the instruction register is updated and the Adetyesisr is selected.

AR AN AR AU BN AN AN A S

™\

TCK

[%)

ggﬁ‘CT"R' XCAPTURE-IR HIFT-IR-STATE EXITL-IR Y UPDATE-R Y SELECT-DR ‘

TAP
STATE SCAN

X X

TDC HIGH IMPEDENCE / \

TDI

Figure 12 Loading the Instruction Register (Select Address Register)
The data register does not need to be accessed at this stage asasaation is being performed.

The last stage of setting up the transaction parameter registelkemwriting to the Transaction
Command register with the required read transaction.

When all the transaction parameters have been set up the accagedsost placing the TAP
controller into theRun- Test / | dl e state.

To obtain information about the transaction, the JTAG status regisieerrogated. Since this is a
read only register the signal suppliedTdd is ignored when the register contents are shifted out
throughTDO. The appropriate bit fields are then checked to verify the read ttmmsaefer to

Accessing the Status Regqisfer a standard routine on how to decode the JTAG Status register.

When the transaction has completed successfully the data regstézatedSel ect - | R- Scan
state structure is selected and the chiglel is serially loaded into the instruction register. The
Sel ect - DR- Scan state is then entered and data is shifted out from the selected device.

JTAG Port Reset

When implementing a system with a JTAG port, pin SS1 must be connected to |dgéchaatd
such that, when the PC sets signal SS1 low (active), signal xclrendiliben low to reset the ARC
700 processor.

ARC® 700 External Interfaces Reference 27

PC - JTAG Communications JTAG (Joint Test Action Group) Communication Module

PC - JTAG Communications

The ARCangel3 (AA3) Development board features an interface to a biigiira@ PS/2 parallel port.
This port allows the following functions to be performed:

start, stop and single step the ARC 700 processor
read/write all core registers

read/write all auxiliary registers

read/write external memory

perform system reset

generate a ARC 700 interrupt

With the exception of resets, all functions are performed by downloading & &dbéss/control
word, followed by 32 bits of send or receive data. The 32 bit values are 1salht,deast significant
bit first.

Table 7 shows a summary of the signals in use on the parallel port @nnect
Table 7 JTAG Port Signals

Pin Driver Signal Function

1 pc TCK Test Clock - Used to control data flow. Data from the PC
latched on rising edge.

2 Not used

3

4

5

6

7

8 pc TMS Test Mode Select — used to select the TAP controlles stat

9 pc TDI Test Data In - Serial Data input

10 Not used

11 aa busy Valid for AA3.
Set high whenever AA3 JTAG port is in non-idle state.
Drives the right-hand LED on AA3.

12 Not used

13 aa TDO Test Data Out — serial data out

14 Not used

15 Not connected

16 pc ss0O Valid for AA3. See following page.

17 pc ssl Valid for AA3. See following page.

18 Ov

19 Ov

28 ARC® 700 External Interfaces Reference

JTAG (Joint Test Action Group) Communication Module PC - JTAG Communications

Pin Driver Signal Function
20 Ov
21 Ov
22 Ov
23 Ov
24 Ov
25 Ov

As a requirement for the SeeCode DLL an external reset signal should lakegriovhe JTAG
interface version of the ARC 700 processor allowing the chip to be résee iB a soft reset
mechanism in the JTAG module that is used to reset JTAG module alone.

ss0 and ss1 are used as follows when a JTAG comms port is implementedAf thevelopment
board. At the D25 connector to the AA3 board, the functionality of ssO and ss1l is:

ssO

0
1
0
1

ssl

0
0
1
1

Reset the ARC 700 system on the FPGA
FPGA Configuration download
ARC 700 system in normal operation

ARC 700 system in normal

ARC® 700 External Interfaces Reference 29

Chapter 3 — Bus Bridge

A bus bridge provides several useful architectural functions. Theehpidyided performs the
following functions.

* Bus protocol translation
* Bus timing registering
» Clock crossing

Bus protocol translation enables the ARC 700 design to interface to any blogyapat uses a
specific bus protocol. The ARC 700 processor uses native BVCI (mandatoairsigsubset as
defined by pages 27, and 29 - 30 of the VSI Alliance Virtual Component Intettuoga®d Version 2
(OCB 2 2.0)). In order to interface to a non-BVCI memory system, an apprdmugataidge is
needed that can perform BVCI to non-BVCI bus protocol standards conversion. THeliefge
that is included in an ARC 700 processor build performs no bus protocol translatiefgréhéhe
default memory interfacing standard it BVCI.

Bus timing isolation is used to register signals that are lgtéray (relative to the rising edge of the
CPU clock) from the various processor components, such as the instaratidata caches. The
output of the bridge interface ensures that a transaction startsrigingedge of the clock,
providing a complete cycle for any proprietary memory subsystem.

Clock crossing provides the ability to support a different clock speed opdteensbus to that of the
processor internal bus (BVCI).

The following sections describe the bus bridges in more detail:
* Bus Bridge Block Diagram
» BVCI Protocol

e Bus Bridge Block Diagram

e Clock Synchronization Unit
e Clock Crossing BVCI Bridge

For additional information on alternative CPU Island interface#\t#2Bus Bridge ReferencéXI
Bus Bridge ReferencandARC Legacy Bus Bridge Reference

ARC® 700 External Interfaces Reference 30

Bus Bridge Bus Bridge Block Diagram

Bus Bridge Block Diagram

Core Ext Aux Ext HwAp
Regs | Regs | Regs Inst. Int.
Interrupt [« FRQS‘;‘
Processor Core <:> System [
< IRQN
I-Cache D-Cache | Debug
merface K—— JTAG
BVCIII Bvclﬁ
Bridge Bridge
‘ ¢ ‘ ‘ ¢ ‘ Processor Island
7% 7%
Memory System
Specific Protocol
Initiator L Initiator
‘ BVCI Arbiter

II Target II Target

‘ BVCI Memory Controller ‘ BVCI Bridge ‘

Off-chip RAM ARC EMAC] [aRc UsB] B[
! 1 1 :

(up to 8)

ARC UART
1

(up to 8)

T T

Example Memory
Subsystem

Figure 13 Example of a Typical ARC 700 System

BVCI Protocol

Basic Virtual Component Interface (BVCI), is a sdi-of the Virtual Component Interface (VCI)
standard, and it is a protocol standard resultiognfthe work of the On-Chip Bus Development
Working Group of the Virtual Socket Interface Afiige (VISA). This open standard was written to
provide a general interface specification for VattComponents (hardware Intellectual Property) so
that they can be easily used to built System-orpC80C). Designed primarily as a point-to-point
on-chip protocaol, it is technology independent ltag the advantage of being a powerful protocol,
and yet inherently efficient and simple to implemdie VCI standard defines three levels of
Complexity, and they are, in the order of complexiteripheral VCI (PVCI), Basic VCI (BVCI) and
Advance VCI (AVCI). PVCI protocol is a sub-set o8l and AVCI adds onto BVCI by specifying
optional signals that can be added.

The internal processor bus protocol implements B\BYCI defines an inherently split protocol. It
allows multiple access commands to be sent fromitiator interface to a target interface before
data or responses of the commands are returndlbxitsility also makes it suitable for most
applications, and makes it relatively easier togtate to other protocols.

With the BVCI protocol, individual access commaads sent as cells over a synchronous command
bus. The read data and access response are theredeas cells over a separate response bus. These

ARC® 700 External Interfaces Reference 31

BVCI Protocol Bus Bridge

cells are combined to form packets (burst trangfetandshaking between initiator and target
interface at cell level is performed using simpaé alid and acknowledgement signals. One or more
cells are packaged into packets, using additidgabss to denote the last cell of a packet andchdefi
the addressing scheme.

Detailed information on the BVCI protocol may bdaibed from:
» VSI Alliance -www.vsi.org Virtual Component Interface Standard (v2.0 - OCB 2 2.0)

BVCI Signal List

The following BVCI interface signhals may appeartba CPU Island, where * is the particular BVCI
signal group:

Table 8 BVCI Signal List

Signal Direction Description

*_address[31:0] Qutput Physical Byte Addres# needs to be updated on every cycle
during a burst.

*_be[7:0] Output Byte EnablesThey can be byte, word, long word or double
long words sized transactions.

*_cmd[1:0] Output CommandThe types that can be issued are:
* Read-0x1
o Write — 0x2
* Locked Read — 0x3

*_cmdval Output Command Cell Validatérhe values on the command bus are
valid when this signal is true.

*_eop Output End of PacketThis signal is asserted on the last burst cycle
to indicate the end of that burst request.

*_plen[5:0] Output Packet LengthDescribes the packet length in bytes:
« Byte-0x1

* Word (16 bits) — 0x2
* Longword (32 bits) — 0x4
» Burst of 32 bytes (4 cells packet) — 0x20

*_wdata[63:0] Output Write Data This is the data from a write.

*_cmdack Input Command Acknowledgacknowledges the valid command
cell.

*_rdata[63:0] Input Read DataThis is the returning data from a read request.

*_reop Input End of packebn the response bus.

*_rspval Input Response Valid

*_rerror Input Response ErroBus errors are transferred directly to the

ARC 700 core via the BVCI interface.

32 ARC® 700 External Interfaces Reference

http://www.vsi.org/

Bus Bridge Bus Bridge Block Diagram

Bus Bridge Block Diagram

ibus InternalBUS module (Bridge)
Processor cbri Clock crossingBRIdge
BVCI Initiator cksyn ClocK SYNc Unit
BVCI bus
*
cpuck | | 4 266MHz
cksyn cbri 266/133/66MHZ’
ibus
? '
system_clk — Memory System +Example equencis.
Protocol

Figure 14 Bus Bridge Structure (IBUS)

Logic that is contained within the bus bridge iereed to as thé€BUS. The naménternal Busis

derived from the concept of the processor islangr@eessor island denotes a collection of processor
specific components that operate from a singlegs®ur clock. Processor Island components natively
make use the BVCI protocol; therefore the IBUS @eot is BVCI.

The bridge is made up of two sub-modules and thety a
» Clock Crossing Bridge
» Clock Synchronization Unit

The Clock Crossing Bridge (CBRI) is responsibledonverting accesses from a processor island
component (such as the instruction cache), whicmithe CPU clock domair1k_cpu) onto the
memory system clock domainlk_sys). The supported frequency ratioscdk_cpu to c1k_sys are

1:1, 2:1, 3:1 and 4:1, and both clocks have toHzsed locked and clock tree balanced. This module
is also responsible for isolating the timing witltlire internal bus from that of the memory system
bus.

The Clock Synchronization Unit (CKSYN) is respomsifor keeping track of the phase relationship
betweenc1k_cpu, used within the processor island, an@_sys. This unit sends out synchronization
signals to the bridge to help it latch and trandiga correctly.

All modules in the bridge module, except CKSYN, goits clock gating by generating a busy signal
whenever there are outstanding accesses beingedandl

Clock Synchronization Unit

The Clock Synchronization Unit, called CKSYN, isedgo provide synchronization signals to the
bridge so as to ensure that data on the BVCI budedransferred correctly across the clock domain.
This module generates a synchronization signalppart processor clock to system clock frequency
ratios of 1:1, 2:1, 3:1 and 4:1. Both clocks musphased locked.

Figure 15 shows the design of the clock synchraioizainit.

ARC® 700 External Interfaces Reference 33

Clock Synchronization Unit Bus Bridge

Toggle Edge Detect FiEEE 2b01 4, Last Phase

Detect

2nd_last_ph sync

zzzzz

Startup Mask
Generator

Figure 15 Design of the CKSYN

The CKSYN unit is used to generate a pulse onyhelsonization signalsfnc) that correspond to
the last main clock period that resides in theesystlock domain. It does this without having to
resort to the use of the clock signals themselsasput signals, and without the need for the tser
configure the hardware via software programmaliesters or via configurations during RTL
generation. This allows the module to be placedrantéd without special consideration, allowing
the user to avoid complicated issues often relmeing clocks as signals, and easing the task of
choosing or changing the system bus frequency ¢inaut the SoC development cycle.

The CKSYN uses a number of logic units to gendiraesynchronization signal.
* Toggle Unit

» Edge Detection
e Phase Detection

« Mask Generator

+ Last Phase Detect

Toggle Unit

The Toggle Unit generates a toggle sigrag§le) that changes at every rising edge of the system
clock (cTk_sys).

Edge Detection

The Edge Detect unit detects the rising edge ofdgle signal on the CPU clock domain. This edge
signal edge) will always go high at the first CPU clocklik_cpu) period within a system clock
period €1k_sys).

Phase Detection

The Phase Counter Unit counts up continuously atslceared whenever the edge signal is high.
Hence the counter always counts up to one lesstigamumber of CPU clock cycles that fit in the
system clock cycle. Therefore, for example, folRUCGlock to system clock frequency ratio of 4:1,
the counter counts continuously from O to 3. Thgesof clock ratios supported is dependent on the
width of the counter, with the largest ratio supedrat 2:1 for a N bit counter. For the bridge to
support up to 4:1, the counter only needs to bebitgowide.

34 ARC® 700 External Interfaces Reference

Bus Bridge Clock Synchronization Unit

Mask Generator

The Startup Mask Generator unit is basically atztift register that turns the synchronization knas
off (sync_mask = 1) after two detected edges of the toggle sigidib mask is used to block incorrect
synchronization signal that can be generated dah@gtart-up of this module after global reset.

Last Phase Detect

The Last Phase Detect unit is used to generatésa patithe last CPU clock cycle within the system
clock cycle. Since it only needs to support up:fioclock ratios, this module has been simplified. A
2-bit register is used to capture the count vatuevary toggle edge and it (ratio) represents khekc
ratio of the two different clocks, with “00” repergting 1:1, “O1” representing 2:1, “10” represegtin
3:1 and “11” representing 4:1. This value is theaduto select from four different pulses that are
generated, (each pulse refers to a specific clak®)r The first pulse type is for ratio 1:1 whéhne
pulse is always on. The second pulse type is far 2al, where the signal is set to high every time
the count value is at “01”. The third pulse typéoisratio 3:1, where the signal is set to high wkiee
count value is “00”. Finally the fourth pulse tyisefor ratio 4:1, where the signal is set to highew
the count value is “01”. The selected pulse siggm#ien combined with the mask signal through the
AND gate, and registered to become the synchraaizésync) output.

NOTE During global reset, all flops, registers and the counter are set to zero.

Figure 16, Figure 17, Figure 18 and Figure 19 sfoaw example timing diagrams when dealing with
4:1, 3:1, 2:1 and 1:1 clock ratios respectively.

o\
systemdk __f \ [\ [\ [
toggle /—\—/—\—
AV A AV aVaVaaVaVaVaVaVaVaVaVaVavaV
edge [\ [\ [\ [\
countf1:0] - ! » \ ‘
ratio 000 X b1l
2nd st ph /L [\ [\
sync_mesk /
sy [\ /\ [
Figure 16 CKSYN Timing Diagram at 4:1 Clock Ratio
st

ssemok __ /[_ [__/ S S S [_J

sy /A Y A W B W R W A

Figure 17 CKSYN Timing Diagram at 3:1 Clock Ratio

ARC® 700 External Interfaces Reference 35

Clock Synchronization Unit

Bus Bridge

o\
ssemck __ [~ __ [[S/ / /S S/ U/
Y e WY s WY e W
N N a W eV a ANV VeV aWaW aWaWaWalaVW

etge /A S A U A U A S B
coun{:] 'b00 S EER T €N E T 0 E0) 0) 0

ratio 'b00 X 'b01
2nd last ph I A W A U A W A W A Y
sync_mask /

sy [S S
Figure 18 CKSYN Timing Diagram at 2:1 Clock Ratio

s\

ssemak —_/_/\/\ M\
togge / \ / k / M / v | E—
ok T\ Y

edge /
coutf:0] 'b00) boL)
ratio 'b00 X\ bot)
20 et ph /
; mesk /
sync /

Figure 19 CKSYN Timing Diagram at 1:1 Clock Ratio

36 ARC® 700 External Interfaces Reference

Bus Bridge Clock Crossing BVCI Bridge

Clock Crossing BVCI Bridge

The CBRI is used to convert accesses between thelbwk domainsdlk_cpu andclk_sys). The
supported frequency ratios ofk_cpu to c1k_sys are 1:1, 2:1, 3:1 and 4:1, in the bridge module.
However, this sub-module can support any ratideragas the CPU clock is the same or higher
frequency than system clock, and where it is higihé multiple times the frequency of the system
clock. Both clocks have to be phased locked antkdi@e balanced. This module is also responsible
for isolating the timing of the internal bus and 8VCI System Bus from each other.

The CBRI cannot perform data packing and unpackimgn converting access from one clock
domain to another, and therefore, is essentidilysarepeater. It is capable of handling the crgssin
clock domain with the help of the CKSYN unit.

Command Bus

A VAN
system_cl ib_c
. F — xx_cmdval
xx_cmdval
C QD Outward Control T e I cbri_cmdack
cm
VAN

d_
Command Bus lbus
system_clk Repeater Y system_ci
System Bus
Processor
Istand Component
1) Response Bus
Response B 9o Q D Q
EN EN
ib_rspack
system_clk system_clk — xx_rspack
xx_rspval 4—‘
Xx_rspack QD Inward Control b rspval L chri_rspval
rsp
|b A
Response Bus lusy
system_clk Repeater system_clk
—————Pchri_busy

Figure 20 Design of the CBRI - Resets Not Shown

The CBRI is made up of a number of logic units:

* A command bus repeater module, used to deal wétikeimmand bus timing isolation.

* Aresponse bus repeater module, used to deal éthesponse bus timing isolation

* Handshaking gating logic, used to ensure corrauti$tzaking when crossing the clock domain

* An OR gate to combine the busy signals from therepeaters.

ARC® 700 External Interfaces Reference 37

Chapter 4 — Bus Interfaces

This section summarizes the signal naming converitiothe various processor island components

that attach to the bus bridges, as well as théhdge interface to the external memory system for
the following modules:

» Instruction Cache (MWIC) to Memory Bus System (Bigs Bridge)

 DMP to Memory Bus System (via Bus Bridge)

For additional information on alternative CPU Islanterfaces seAHB Bus Bridge ReferencaXI
Bus Bridge ReferencandARC Legacy Bus Bridge Reference

ARC® 700 External Interfaces Reference 38

Bus Interfaces Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)

Instruction Cache (MWIC) to Memory Bus
System (via Bus Bridge)

The instruction cache (MWIC) does not connect diye¢o the memory bus systems. An intermediate
bus bridge is used as shown in the following sastio

e« MWIC and Bus Bridge Block Diagram

« MWIC to Bus Bridge Signal List

 MWIC Bus Bridge to External Bus System Signal List
e MWIC Unimplemented Signal List

* Big-Endian Configuration

» Interface Timing

MWIC and Bus Bridge Block Diagram

Command Bus Command Bus

mwic_cmadval Fn N iini_cmd

32bis mwic_address azbis iNini_address :
[os] o) @
g mwic_eop 8 (<) inini_eop N
—_ B v — ; v
§_ mwic_cmdack — Q inini_cmdack *
MWIC = 2 G : External
(Multi-wWay = i o
nssucton cane) | © @ Pus Bridge | 3 Memory Bus
) =| (Bus) |a
=3 mwic_rspval =] iini_rspval
2 ‘ 2 = i System
3, | eevs mwic_rdata g« 3 s iini_rdata :
8 o =t
@ mwic_rspack : @ 2 jini_rspack ,
B (]
mwic_rerror : iini_rerror

Response Bus Response Bus

Figure 21 Instruction Cache to IBUS

MWIC to Bus Bridge Signal List

The following MWIC Bus Bridge interface signals @méernal to the processor island and wik
appear on the CPU Island:

Table 9 MWIC to IBUS Interface

Name Direction Width Description

mwic_rspack |nput 1 Acknowledgement from the MWIC to say that it haseieed a
valid 64-bit data item. Active High

mwic_cmdval — |nput 1 Validates the command cell. Active High

mwic_eop Input 1 Signifies end of packet and only asserted on theticand final
command cell. Active High

mwic_address |nput 32 Physical byte address of instruction wortie fetched

mwic_cmdack Qutput 1 This is the signal from the bus bridge that ackmealges the
receipt of a valid command

mwic_rdata Output 64 This is the returning 64-bit instruction word reting from the
bus bridge.

ARC® 700 External Interfaces Reference 39

Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge) Bus Interfaces

Name Direction Width Description
mwic_rspval Qutput 1 Validates ‘mwic_rdata’
mwic_rerror Qutput 1 Response error. Bus errors are transferred dirertlye ARC

700 core via the BVCI interface.

MWIC Bus Bridge to External Bus System Signal List

The following MWIC Bus Bridge interface signals megpear on the CPU Island:
Table 10 Bus Bridge to External Memory System

Name Direction Width Description

iini_rspack Input 1 Acknowledgement from the bus bridge to say
that it has received a valid 64-bit data item.
Active High

iini_cmdval Input 1 Validates the command cell. Active High

iini_eop Input 1 Signifies end of packet and only asserted on the
fourth and final command cell. Active High

iini_address Input 32 Physical byte address of instruction word to be
fetched

iini_cmdack Output 1 This the signal from the memory bus system that
acknowledges the receipt of a valid command

iini_rdata Output 64 This is the 64-bit instruction word returning
from the memory bus system

iini_rspval Output 1 Validates ‘iini_rdata’

iini_rerror Output 1 Response error. Bus errors are transferred
directly to the ARC 700 core via the BVCI
interface.

MWIC Unimplemented Signal List

Both the MWIC BVCI Target interface and bus bridgeit some signals from the BVCI protocol.
These signals are omitted because they are alveagsant. If required, a tie value can be used as
show in Table 11.

Table 11 Unimplemented BVCI Interface Signals onth e MWIC to IBUS Interface or IBUS to External
Memory

Name Direction Width Tied Value Description

mwic_cmd\iini_cmd Input 2 2’b01 Command, which for this
interface is always a read
from the MWIC.

mwic_contig\iini_contig Input 1 1 States that the addresses
provided are contiguous.
Always true from the
MWIC.

mwic_wrap\iini_wrap Input 1 1 States that the addresses
provided are critical word
first, wrap around format.
This is always true from the

40 ARC® 700 External Interfaces Reference

Bus Interfaces Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)

Name Direction Width Tied Value Description
MWIC.
mwic_constant\iini_constant |npyt 1 0 Implies a constant address.
Never true.
mwic_plen\iini_plen Input 6 32 Total number of bytes that
is required. Always 32.
mwic_be\iini_be Input 8 8'bff Byte enable signal. Always
has value OXFF in this case.
mwic_reop\iini_reop Output 1 - End of Response Packet.

Not used by MWIC.

Big-Endian Configuration

When the ARC 700 processor is configured as a thilip@ system, the 32-bit local data is
appropriately aligned within the 64-bit data in #ystem memory.

Interface Timing

The MWIC module only performs read accesses, withcket size of 32 bytes (burst of four 64 bits
cells). The interaction between the MWIC BVCI lattr interface and the bus bridge interface is
described, however the transactions between thermge and memory bus system are identical.

mwic_cmdval [\
mwic_address[31:0] - 00000000 Xooooooo& Xoooooow Xoooooow _
mwic_eop /—\
mwic_cmdack / \
mwic_rsval / \
mwic_rdata[63:0] — 0706050403020100 X OOOOOOOOOOOOO x ,,,,,,,,,,,,,,,, X ,,,,,,,,,,,,,, _
mwic_rspack / \

Figure 22 MWIC Target Interface Read Access

1. Inthe diagram the MWIC initiates the start of @Bess by asserting the command valid signal
(mawic_cmdval = 1) and presents the first address of the wraprarstyle burst transfer on the
address busngic_address).

2. This first command cell is then accepted by the3BHdrget interface by asserting the command
acknowledgement signaiwi c_cmdack = 1) either in the same clock cycle (known as dléfa
acknowledgement), or after one or more clock cylelts (Figure 22).

3. With each new command acknowledgement, the MWiIttator present the next address,
qualifying it with the command valid signal eaamdi. At the last address cell, the End Of Packet
signal is asserted as well.

4. When the data of this access is available one oe myxles after the beginning of the access, the
IBUS module presents it on the data bws ¢_rdata) and qualifies it with the response valid
signal gwic_rspval = 1). Each data cell is acknowledged by the ititiinterface using the
response acknowledgement sigmatic_rspack). Wait cycles can be inserted between each data
cell by de-asserting either the response validamndsponse acknowledgement signal.

ARC® 700 External Interfaces Reference 41

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

DMP to Memory Bus System (via Bus Bridge)

The DMP unit does not connect directly to the mgnimrs systems. An intermediate bus bridge is
used as shown in the following sections:

« DMP and Bus Bridge Block Diagram
« DMP to Bus Bridge Signal List
« DMP Bus Bridge to External Bus Signal List

« DMP Unimplemented Signal List

e Big-Endian Configuration

e Interface Timing

DMP and Bus Bridge Block Diagram

Comman d Bus Command Bus
/

// £
— dbu_cmdval . — — dini_cmdval :
dbu_address [52bits dini_address
UG - IR

dbu_be : 5bis dini_be

o BV —
BY| 2bits dbu_cmd P BV cl 2bis dini_cmd
cl Lo —4 o p— dini_cmd
ilg:l 6 bits dbu_plen - : Tar| sto 6 bits dini E\en External

64 bis dbu_wdata HE get| me 64 bis dini_wdata .
OF | — Int X P — —— Memory Bus
DMP '”r; dbu_eop : eiBus Bridge |t dini_eop » System
e —
acd dbu_cmdack . ace (IBUS) erf dini_cmdack
ac

dbu_rspval dini_rspual

dbu_rdata : 64 bis dini_rdata

dbu_eop dini_eop

dbu_rerrol s dini

Response Bus / Response Bl

Figure 23 DMP to IBUS Interface

DMP to Bus Bridge Signal List

The following DMP Bus Bridge interface signals areernal to the processor island and vwibit
appear on the CPU Island:

Table 12 DMP to IBUS Interface

Signal Direction Bus Width Description

dbu_address |nput 32 Physical byte address. It must be updated on eyeig
during a burst.

dbu_be Input 8 Byte Enables. They can be byte, word, long wordaarble
long words sized transactions.

dbu_cmd Input 2 Command. The types that can be issueddPMP are:
Read — 0x1
Write — 0x2
Locked Read — 0x3

dbu_cmdval |nput 1 Validates the command cell. The values on the camima
bus are valid when this signal is true.

dbu_eop Input 1 End of Packet. This signal is asserted on theblarst cycle

to indicate the end of that burst request.

42 ARC® 700 External Interfaces Reference

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

Signal Direction Bus Width Description
dbu_plen Input 6 Describes the packet length in bytes:
Byte — Ox1

Word (16 bits) — 0x2
Longword (32 bits) — 0x4
Burst of 32 bytes (4 cells packet) — 0x20

dbu_wdata Input 64 Write Data. This is the data from a write.

dbu_cmdack Qutput 1 Command Acknowledge. Acknowledges the valid command
cell.

dbu_rdata Output 64 Read Data. This is the returning data facread request.

dbu_reop Output 1 End of packet on the response bus.

dbu_rspval Qutput 1 Response Valid.

dbu_rerror Qutput 1 Response error. Bus errors are transferred direxctlye

ARC 700 core via the BVCI interface.

DMP Bus Bridge to External Bus Signal List

The following DMP Bus Bridge interface signals nampear on the CPU Island:
Table 13 Bus Bridge to Memory Bus System

Signal Direction Bus Width Description

dini_address |nput 32 Physical byte address. It needs to be updatedeny eycle
during a burst.

dini_be Input 8 Byte Enables. They can be byte, word, long wordaable
long words sized transactions.

dini_cmd Input 2 Command. The types that can be issuedebPMP are:
Read — 0x1
Write — 0x2
Locked Read — 0x3

dini_cmdval |nput 1 Validates the command cell. The values on the camima
bus are valid when this signal is true.

dini_eop Input 1 End of Packet. This signal is asserted on theblarstt cycle
to indicate the end of that burst request.

dini_plen Input 6 Describes the packet length in bytes:
Byte — Ox1

Word (16 bits) — 0x2
Longword (32 bits) — 0x4
Burst of 32 bytes (4 cells packet) — 0x20

dini_wdata Input 64 Write Data. This is the data from a write.

dini_cmdack Qutput 1 Command Acknowledge. Acknowledges the valid
command cell.

dini_rdata Qutput 64 Read Data. This is the returning data facread request.

ARC® 700 External Interfaces Reference 43

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

Signal Direction Bus Width Description

dini_reop Output 1 End of packet on the response bus.

dini_rspval Qutput 1 Response Valid.

dini_rerror Qutput 1 Response error. Bus errors are transferred directlye

ARC 700 core via the BVCI interface.

DMP Unimplemented Signal List

The DMP BVCI Target interface omits some signaterfithe BVCI protocol. If required, a tie value
can be used as show in Table 14.

Table 14 Unimplemented BVCI Interface Signals

Signal Direction Bus Tied Description
Width Value
dbu_contig\dini_contig Input 1 1 Contiguous Operation. This is
tied high.
dbu_rspack\dini_rspack Input 1 1 Response Acknowledge.

Indicates that the received valid
data has been acknowledged.
This signal is always asserted
high.

dbu_wrap\dini_wrap Input 1 1 Burst Wrap Around. Asserted
on the end of cache line
boundary to wrap around thus
achieving critical word first
requests. This is tied high.

dbu_constant\dini_constant |npuyt 1 0 Implies a constant address.
Never true.

Big-Endian Configuration

When the ARC 700 processor is configured as a hiig® system, the 32-bit local data is
appropriately aligned within the 64-bit data in #ystem memory.

Interface Timing

The DMP BVCl interface is used to perform direcdtstores and data cache refills\ data write backs
to and from main memory. The interaction betweenDMP BVCI Initiator interface and the bus
bridge interface is described, however the traimasbetween the bus bridge and memory bus
system are identical.

The transactions can be classed into several tfpgzerations:
* Read Type | — A contiguous cache line fill where tequested data is in the first 64-bit cell

» Read Type Il = A cache line fill where the requddtata is not in the first 64-bit cell and the
burst request wraps around to complete the buast re

* Read Type Il — A single byte, word, or longworat@ss when all the ways are locked and there
is a cache miss or an access is made to an uncladation.

* Write Type | — A contiguous cache line writebaclkéformed to physical memory.

44 ARC® 700 External Interfaces Reference

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

» Write Type Il — A single byte, word, or longworditeback is performed to physical memory.

» Locked Read — A longword, word or byte read actesislocks the memory controller so that the
next access is serviced from the DMP interfaceotker interfaces are ignored until this
happens.

Each of the operations use standard BVCI transatjgerformed using either a single cell packet
transfer or a burst of four cell transfer.

Single Cell Read Accesses

The DMP uses single cell read accesses to periahtype |1l operations.Figure 24 shows an
example timing diagram.

cpu_clk

dbu_cmdval / \

dbu_eop / \

dbu_cmdack / \

dbu_rspval /——\—
dbu_rdata[63:0]

dbu_reop /—\—

Figure 24 Single Cell Packet Read Access

In the diagram the DMP initiates the start of aceas by asserting the command valid signal
(dbu_cmdval = 1) and presents the addredisu(address), packet lengthdbu_plen), end of packet
(dbu_eop) and access commantb(_cmd) of the access on the command bus.

This first command cell is then accepted by the3BHrget interface by asserting the command
acknowledgement signaliu_cmdack = 1) either in the same clock cycle (known as alefa
acknowledgement), or after one or more clock cylelts.

When the data of this access is available one oe eyxles after the beginning of the access, the
IBUS module presents it on the data hisi(rdata) along with the end of packet signabg_eop),
gualified using the response valid signfdu_rspval = 1).

Single Cell Write Accesses

The DMP uses single cell write accesses to perfarite type Il operations. Figure 25 shows an
example timing diagram.

ARC® 700 External Interfaces Reference 45

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

cpu_clk

dbu_cmdval / \
| 00000010]
oomeico) - N 2 S
s 01 am
sorss N vostsoanozoon)

dbu_eop [\

dbu_cmdack

dbu_rspval

dbu_rdata[63:0]

dbu_reop

:
I

Figure 25 Single Cell Packet Write Access on BVCI T arget Interface between DMP and IBUS

In the diagram the DMP initiates the start of acess by asserting the command valid signal
(dbu_cmdval = 1) and presents the addredisu(address), packet lengthdbu_plen), end of packet
(dbu_eop = 1), access commandb(_cmd) and the write datalbu_wdata) of the access on the
command bus.

This first command cell is then accepted by the3BHrget interface by asserting the command
acknowledgement signaliu_cmdack = 1) either in the same clock cycle (known as alefa
acknowledgement), or after one or more clock cylelts.

When the data of this access is written one or rogekes after the beginning of the access, the IBUS
module respond by asserting the end of packetlsjgna eop = 1) and the response valid signal
(dbu_rspval = 1).

Burst of 4 Cell Read Accesses

The DMP uses burst of four cell read accessesrforpgeRead Type | and Type Il operations. Figure
26 shows an example timing diagram of such an acces

cpu_cll S O O O VO WO o WO o WO o Y O

dbu_cmadval / \

dbu_address[31:0] - 00000018 Y 00000000 Y 00000008 Y 0000001_
dou_be[7:0] e

dbu_cmd[1:0] I

dbu_plen[5:0] e

dbu_wdata[63:0]

dbu_eop

dbu_cmdack / \

dbu_rspval / \

o teteisso] I) o (e
dbu_reop /—\—

Figure 26 Burst of 4 Cell Packet Read Access on BVC | Target Interface between DMP and IBUS

46 ARC® 700 External Interfaces Reference

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

In the diagram the DMP initiates the start of acess by asserting the command valid signal
(dbu_cmdval = 1) and presents the addredtsu(address), packet lengthdpbu_p1len), end of packet
(dbu_eop = 0) and access commani§_cmd = 1 = Read) of the access on the command bus.

This first command cell is then accepted by the 388rget interface by asserting the command
acknowledgement signaliu_cmdack = 1) either in the same clock cycle (known as alefa
acknowledgement), or after one (as in the exampdee) or more clock cycles later.

With each new command acknowledgement, the DMRiaitpresent the next address, qualifying it
with the command valid signal each time. The addiesormally incremented by 8 bytes, however,
when the address crosses the boundary of the pacdkgh, the address wraps around to the first byte
address of the packet boundary, which in the chee@xample above, is address 0 in the second
command cell. At the last address cell, the En&&ifket signal is assertatb({_eop = 1) as well to
denote that the command packet is completed.

When the data of this access is available one oe myles after the beginning of the access, the
IBUS module presents it on the data hilsi(rdata) and qualifies it with the response valid signal
(dbu_rspval = 1). Each data cell is acknowledged by the itgtiinterface by default. Wait cycles
can be inserted between each data cell by de-mgstiré response valid.

Burst of 4 Cell Write Accesses

The DMP uses burst of four cell write accessestéopm Write Type | operations. Figure &dows

an example timing diagram of such an access. Ididgram the DMP initiates the start of an access
by asserting the command valid signidu_cmdval = 1) and presents the addredtsu(address),
packet lengthdbu_p1en), end of packetdpu_eop = 0), write datadbu_wdata) and access command
(dbu_cmd = 2 = Write) of the access on the command bus.

This first command cell is then accepted by the 388rget interface by asserting the command
acknowledgement signal{u_cmdack = 1) either in the same clock cycle (known as défa
acknowledgement), or after one (as in the exampdee) or more clock cycles later. With each new
command acknowledgement, the DMP initiator presgr@sext address and data, qualifying it with
the command valid signal each time. The addressrimally incremented by 8 bytes, however, when
the address crosses the boundary of the packeh|eéhg address wraps around to the first byte
address of the packet boundary, which in the chgeed-igure 26, is address 0 in the second
command cell. At the last command cell, the EndP@dtket signal is assertatb{_eop = 1) as well

to denote that the command packet is completed.

When the data of this access is written one or rogekes after the beginning of the access, the IBUS
module responds using the valid signtlu(_rspval = 1). Each data cell is acknowledged by the
initiator interface by default. Wait cycles canibserted between each response cell by de-asserting
the response valid signal.

ARC® 700 External Interfaces Reference 47

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

e U s U s U s W s W s W e U o U o O
dbu_cmdval / \

dbu_addre55[31: O] 00000018 00000000 00000008 00000010

dbu_be[7:0] - FF _
aouonaol [2 e

U G aa—

dbu_eop / \
dbu_cmdack / \
dbu_rspval / \—
dbu_rdatafez:0] [
dbu_reop /—\—

Figure 27 Burst of 4 Cell Packet Write Access on BV Cl Target Interface between DMP and IBUS

Single Cell locked Read Accesses

The DMP uses single cell locked read accessestorpeLocked Readperations. Figure 28hows
an example timing diagram of such an access.

epuck S O A O VY s VO VO W s WY e Y

dbu_cmdval / \ / \
oo asessisro) I
woero

dbu_plen[5:0] I 01
oot

dbu_eop / \ / \

dbu_cmdack / \

dbu_rspval / \ / \

dbu_reop / \ /—\—

Figure 28 Locked Read Access followed by Single Wri te Access on BVCI Target Interface between DMP
and IBUS

1. The first read access proceeds in a very similgrtava single read access except that the
command is a Locked Reatb(_cmd = 0x3).

2. Once the command cell is acknowledged in the ttiodk cycle, the external arbiter design
must lock the bus to the same initiator (DMP-budd®), giving it default grant until it
receives a single or burst write access from theedaMP-bus bridge initiator interface.

48 ARC® 700 External Interfaces Reference

Chapter 5 — Closely Coupled Memories (CCM)

The following subsections cover the direct mematgrifaces that are available on the Instruction
Closely Coupled Memory (ICCM) and the Data Clogebupled Memory (DCCM):

e Closely Coupled Memories
e CCM DMI Interfaces

Closely Coupled Memories

CCMs are used to complement or replace traditimsatuction and data cache memories. Unlike
standard cache architectures, CCMs are passive rigmnloat attach to the instruction and data fetch
interfaces of the processor, and provide fast aadlbprogram code access. It is the responsibility o
the programmer to ensure that valid program datiseix the ICCM and valid data in the DCCM.

ARC 700 Processor Integer Pipeline i o™
Write -back
FCH ALN DEC RF EX SEL WB to RF stage
[— — — — — >
ICCM -l = P
EA DA1 Write -back
to RF stage
DCCM DA2 —— DAWB ﬁ
RAM
CTRL
A\
q Nz
LD/ST Access Into ICCM
P, DBU

ICCM DMI DCCM DMI

Figure 29 ICCM and DCCM Configuration Example

CCM DMI Interfaces

The ICCM and DCCM memoaries support a direct meniatgrface into the RAMs (DMI). The
purpose of the DMI is to allow an external cliesuch as a DMA engine, to initialize the contents of

49 ARC® 700 External Interfaces Reference

CCM DMI Interfaces

Closely Coupled Memaories (CCM)

the RAMs prior to processor execution. It is alsggible to modify the contents of the RAMs whilst
the CPU is in a ‘run’ state, however data coheresgyes must be considered.

CCM DM Signal List

The following CCM DMI BVCI interface signals may jagar on the CPU Island.
Table 15 DCCM Direct Memory Interface (DMI)

ICCM Signals

Direction Bus
Width

DCCM Signals

Description

iccm_dmi_address

iccm_dmi_be

iccm_dmi_cmd

iccm_dmi_cmdval

iccm_dmi_contig

iccm_dmi_eop

icem_dmi_plen

iccm_dmi_rspack

iccm_dmi_wdata

icem_dmi_wrap

dccm_address Input 32

dccm_be Input 4

dccm_cmd Input 2

dccm_cmdval

Input 1

dccm_contig Input 1

Input 1

dccm_eop

dccm_plen Input 6

dcem_rspack Input 1

dccm_wdata Input 32

dccm_wrap

Input 1

Byte Address. The ccm_address is
updated on every cycle during a
burst.

Byte Enables. The requests to this
interface can be of the size byte,
word or longword (32-bit),
therefore this signal should be set
depending upon the size of the
requested cell.

Command. The type of command to
be performed is specified by this
bus:

Read — Ox1
Write — 0x2

This bus is qualified with
dcecm_cmdval.

Command is Valid. The values on
ccm_cmd, ccm_address, are valid
when this signal is true.

Unused

End of Packet. The signal
dccm_eop is asserted on the last
burst cycle to indicate the end of
that burst request.

Unused

Response Acknowledge. This
signal tells the CCM that the
received valid data has been
acknowledged.

Write Data. This is the data from a
write request (dccm_cmd = 0x2)
and is qualified when dccm_cmdval
is true.

Unused

50

ARC® 700 External Interfaces Reference

Closely Coupled Memaories (CCM) CCM DM Interfaces

ICCM Signals DCCM Signals Direction Bus Description
Width
icem_dmi_cmdack dcem_cmdack Output 1 Command Acknowledge. This

signal acknowledges every cell
during an operation.

icem_dmi_rdata dccm_rdata Output 32 Read Data. This is the returning

data from a read request
(deccm_cmd = “01") and is qualified
when dcecm_rspval is true.

icecm_dmi_reop dccm_reop Output 1 End of packet.
iccm_dmi_rerror dccm_rerror Output 1 Unused
icem_dmi_rspval dcem_rspval Output 1 Response Valid. The dccm_rspval

acknowledges both read and write
data.

Interface Reset State

Upon a global reset all signals on this interfaeesat to zero. This is also expected to be the efa
the interface at time zero for simulation purposes.

CCM DMI Behavior

The CCM DMI interfaces supports all the command esoggrovided by the BVCI protocol (Refer to
the Virtual Component Interface Standard), ancctpabilities of both the ICCM and DCCM are
identical.

The CCM'’s support the following types of operation:

Read Type | — A burst read operation

Read Type Il — A single cell read operation of &ebyord, or longword (32-bits) size
Write Type | — A burst write operation

Write Type Il — A single cell write operation obate, word, or longword (32-bits) size

Read Type | Timing Behavior

The memory requesting device issues a read buypseses to the CCM controller. A cycle-by-cycle
description:

1. Time=10ns. The address is set up dan_address = ADDRO when a readc¢m_cmd = 0x1)

is performed. This access is valittg_cmdval = '1’) and this access has a burst length of 32
bytes, i.eccm_plen= 0x20. The write datac€m_wdata) is ignored. Also ccm_contig and
ccm_wrap are ignored, because the CCM control neodiogs not service the request
differently if any of these are set. All bytes asturned during read operations, so ccm_be is
actually ignored by the CCM.

Time = 20ns. The CCM control module acknowledges the readesitfdcm_cmdack = ‘1’).
The address, access type, and qualifier signalmaigained, i.eccm_address = ADDRO,
cem_cmd = 0X1 andcem_cmdval = '1’ respectively.

Time = 30ns. Data cm_rdata = DATAOQ) is returned to the memory requesting devand

it is valid (ccm_rspval = ‘1’). The memory requesting device has the raspo
acknowledgement default set in this examplen(rspack = ‘1"), which means that the
device immediately acknowledges the returning daso, the address is set up for the next

ARC® 700 External Interfaces Reference 51

CCM DMI Interfaces Closely Coupled Memaories (CCM)

access Viacm_address = ADDRL1 for the readdcm_cmd = 0x1) is performed. This access is
valid (ccm_cmdval = '1’). This is a contiguous accesscf_contig = ‘1’) and all bytes are to
be written back to the CCMc€m_be = OXFF). The write datacém_wdata) is ignored. The
CCM control module acknowledges the read request ¢mdack = ‘1’) made on this cycle.

Time=40ns. Data cm_rdatra = DATAL) is returned to the CCM control module ahig
valid (ccm_rspval ="'1"). The memory requesting device also acknalgés receipt of the
received datadcm_rspack = ‘1’). The address is set up for the next ac¢ess_address =
ADDR?2) in the burst sequence. The CCM control medulknowledges the read request
(cem_cmdack = *1") made on this cycle.

Time = 50ns. Data cm_rdata = DATAZ2) is returned to the CCM control module anis

valid (ccm_rspval = ‘1’). The requesting device also acknowledgeeim of the received
data cm_rspack = '1’). The address is set up for the next ac¢ess_address = ADDR3)

in the burst sequence. This is the last requésiimurst sequence, which is indicated by the
end of packet being setdmn_eop = ‘1").

Time=60ns. Data cm_rdatra = DATAS) is returned to the CCM control module anid
valid (cem_rspval="'1"). The CCM control module confirms that tldata is last in the burst
(cem_reop = '1’) and the requesting device acknowledgesipt@é the received data
(cem_rspack = ‘1’). The requesting device has no more valiguests to make to the CCM
(cem_cmdval ="0’).

Time=70ns. There are no further requests by the requesenge (ccm_cmdval ="'0’).
'O‘\B\ | | '1%\ \'m\ | 'K‘)‘?‘ | ‘4%\ | ‘%\\ ‘%\ | ‘7%

7 I A N A A W A WY R W

com addressi310] [N ADDRO) ADDRL) ADDR2 | ADDR3 |
C

cem bef30] -(F

o o) [T 1 o
ccm cmoval / \
ccm contig
€Ccm eop / \
com el % =
ccm rspack
am vaizro) [
ccm wiap
com cmolack / \

com eI 070) oAl) oae) e

ocm reop / |

ccm rspval / _

Figure 30 Read Burst on the CCM Burst Interface

Read Type Il Timing Behavior

The memory requesting device issues a single eadl request to the CCM. A cycle-by-cycle
description:

52 ARC® 700 External Interfaces Reference

Closely Coupled Memaories (CCM) CCM DM Interfaces

1. Time=10ns. The address is set up \déan_address = ADDR. A read €cm_cmd = 0X1) is
performed. This access is valiecg_cmdva7 = *'1") and this access has a burst length of 4
bytes, i.e.ccm_plen= 0x04. The minimum amount of data that can be ozad BVCI
interface is a cell, which in this case is 4 by&%bits). All 4 bytes will be sent back,
because during read operations the level of gratula one cell. It is up to the memory
requestor to extract the relevant bytes, wherciives the requested cells. As it is a read
operation both the write datadp_wdata) and the byte enablesdp_be) are ignored.

2. Time=20ns. The CCM acknowledges the read request.(cmdack = ‘1’). The address,
access type, and qualifier signals are maintaired;cm_address = ADDR, ccm_cmd = Ox1
and ccm_cmdval = ‘1’ respectively.

3. Time=30ns. There are no further requests by the CCM colitiet_cmdvai ='0"). Data
(cem_rdata = DATA) is returned to the CCM control module ahi valid (ccm_rspval =
‘1"). The memory requestor also acknowledges readifhe received datacém_rspack =
‘1"). The write data écm_wdata) is ignored. There are no further requests byrtemory
requestor §ccm_cmdval ="'0’).

‘0? L ‘10\84 | ‘20\8\ L ‘31\8\ | '4045\ \%
| A S A e A e
ADDR
OF
1

ck
com address[31:0]
com be3:.0]
ccm end[1:0]
com cnovel

com oontig

oom eop
com plen(5:0]
com rspack
com woata[3L:Q)
ccm wiap

com cndack

I
i

]|

ccm rdata[3L:0] DATA

ccm reop
com rspval

HH

Figure 31 Single Cell Read Operation on the CCM DMI

Write Type | Timing Behavior
The memory requestor issues a burst write reqagketCCM. A cycle-by-cycle description:

1. Time=10ns. The address is set up \déan_address = ADDRO when a writedcm_cmd =
0x2) is performed. This access is valid#_cmdvai = '1") and this access has a burst length
of 32 bytes, i.eccm_p7en = 0x20. This is a contiguous accessen_contig= ‘1) and all
bytes are to be written to the CCNcfr_be = OXFF). The write datac€m_wdata = DATAOQ)
is valid.

ARC® 700 External Interfaces Reference 53

CCM DMI Interfaces Closely Coupled Memaories (CCM)

Time=20ns. The CCM acknowledges the write requesin_cmdack = ‘1’). The address,
data, access type, and qualifier signals are maedai.e.ccm_address = ADDRO,
cem_wdata = DATAO, ccm_cmd = 0X2 andcem_cmdval = ‘1’ respectively.

Time = 30ns. The write operation has completed successfalty.(rspva7 = ‘1’). The
memory requestor acknowledges receipt of the writieta €cm_rspack = ‘1’). The address
is set up for the next access vian_address = ADDR1 and write data ccm_wdata =
DATAL. The next access is immediately acknowledgeth _cmdack = ‘1").

Time = 40ns. The write operation has completed successfalty.(rspva7=‘1’). The
memory arbitrator acknowledges receipt of the emitiata £cn_rspack = '1’). The address
is set up for the next access vign_address = ADDR2 and write datacm_wdata =

DATAZ2. The next access is immediately acknowledged._cmdack = ‘1’).

Time = 50ns. The write operation has completed successfalty. (rspva7="1"). The
memory requestor acknowledges receipt of the wriiega €cm_rspack = '1’). The address
is set up for the next access vian_address = ADDR3 and write datacm_wdata =

DATA3. This is the last request in the burst4_eop = ‘1’). The last access is immediately
acknowledgeddcm_cmdack = ‘1’).

Time = 60ns. The write operation has completed successfulty. (rspva7 =‘1"). The CCM
control module confirms that this data is lasthia burst Ecm_reop = ‘1’) and the memory
requestor acknowledges receipt of the received(data rspack = ‘1’). The CCM control
module has no more valid requests to make to thd Cé&em_cmdva7 ='0"). The address,
write data and access type can be ignored.

Time=70ns. There are no further requests by the memory mquécm_cmdvail="0").
'0.\8\!\‘19’?!\'2\0’?\\‘%\\‘49\8\\‘%\\‘%\!‘79!5

a L\]]\

oom actressizrg) IR ADoR0 | AcR1 Y AcDre | Accrs IR
ambeiz0) [F o
cm otz [N 2 o
omord |/ |
ccm contig
com eop [\]
oom penf50) [T 2 T
oom rspack
amwdta30 [DAar0) DatAl | DA) DATAs |
oom wiap
omoreck |/ |

com re31) |
[\]

oom regp

com rspl / \

Figure 32 Write Burst Operation to the CCM DMI

Write Type Il Timing Behavior
The memory requestor issues a single cell writaesgto the CCM. A cycle-by-cycle description:

54

ARC® 700 External Interfaces Reference

Closely Coupled Memaories (CCM) CCM DMI Interfaces

1. Time=10ns. The address is set up déan_address = ADDR when a write dcm_cmd = 0x2)
is performed. This access is valietg_cmdval = *1’) and this access has a burst length of 4
bytes, i.eccm_pilen= 0x4. The lower 4 bytes are to be written to@@M (ccm_be = OXOF).
The write datadcm_wdara = DATA) is valid.

2. Time=20ns. The CCM control module acknowledges the writeuest] ccm_cmdack = ‘1).
The address, data, access type, and qualifierlsigramaintained, i.ecm_address =
ADDR, ccm_wdata= DATA, ccm_cmd = 0x2 andccm_cmdval = '1’ respectively.

3. Time= 30ns. The write operation has completed successfalty. (rspva7="'1"). The CCM
control module confirms that this data is lasthea burst écm_reop = ‘1) and the memory
requestor acknowledges receipt of the received(data rspack = ‘1’). There are no further
requests by the memory requestatn_cmdval = ‘0’).

4. Time=40ns. The memory requestor has no more valid requestske to the CCM
(cem_cmdval ='0"). The address, write data and access typebeaignored.

'%\\\‘10\’5\\\'m!!\‘m!!!'m\!!'m

ol A S A ey A e A e

ccm address[31:0] ADDR
ccm be[3:.0]
ccm omd[1:0]
ccm cmoval

OF
2

ccm _contig

ccm eop
ccm plen[5.q]

com wdata[31:0]
ccm wap

ccm _cmdack
com rdata[3L:0]
ccm reop

com rspval

DATA

1

1

Figure 33 Single Cell Write Operation on the CCM DM |

ARC® 700 External Interfaces Reference 55

Chapter 6 — XY Memory

The following subsections cover the direct mematgrifaces that are available on the XY Memory
Module:

e XY Memory
o« XY DMl interface

56 ARC® 700 External Interfaces Reference

XY Memory XY Memory

XY Memory

The XY Memory module is an optional DSP extensimthe ARC 700 processor core. This

extension provides a high data throughput closelypt=d memory, accessible via pointer, that can be
automatically updated. The XY memory extension aimisttwo memory regions of equal size, each
configurable at build time from 4K up to 32K eaéitso configurable at build time is a direct

memory interface (DMI). The DMI enables an exterl&nt, such as a DMA engine, to perform the
following:

» Initialize the contents of the RAMs prior to prosesexecution.
* Maodify or upload the contents of the RAMs whils¢ t6PU is running.
» Read or offload the contents of the RAMs whilst @fU is running.

Since no coherence protection is provided withXifenemory DMI port, the user has to be aware
that other software or hardware mechanisms magdpgred to deal with data coherency.

For more details on the XY memory module, pleager te theARC 700 DSP Options Reference

XY DMI interface

The XY DMI interface is an optional DMI interfacéhe XY DMI Signal List section lists the signals
on the DMI interface.

XY DMI Signal List

The following XY DMI BVCI interface signals may apar on the CPU Island:
Table 16 XY DMI Interface Signals

Signals Direction Bus Description
Width
xydmi_address |nput N Byte Address. It is updated on every cycle duritmiest. N

varies with the size of each memory region:

e 4k perregion, N=13

» 8k perregion,N=14

» 16k per region, N = 15

e 32k perregion, N = 16

xydmi_be Input 8 Byte Enables. The requests to this interface caof bee size

byte, word , longword (32-bit) or double longwogbits).
Therefore this signal should be set depending tippsize of
the requested cell.

xydmi_cmd Input 2 Command. The type of command to be performed isifspe:
by this bus:
Read — 0x1
Write — 0x2
This bus is qualified with xydmi_cmdval.

ARC® 700 External Interfaces Reference 57

XY DMl interface XY Memory

Signals Direction Bus Description
Width

xydmi_cmdval — nput 1 Command is Valid. The values on xydmi_cmd,
xydmi_address, xydmi_be and xydmi_eop are validmihis
signal is true.

xydmi_eop Input 1 End of Packet. The signal dccm_eop is assertedetast
burst cycle to indicate the end of that burst retjue

xydmi_rspack |pput 1 Response Acknowledge. This signal tells the XY mgmo
module that the received valid data has been adkdged.

xydmi_wdata |nput 64 Write Data. This is the data from a write requegtini_cmd
= 0x2) and is qualified when xydmi_cmdval is true.

xydmi_cmdack Qutput 1 Command Acknowledge. This signal acknowledges evelty
during an operation.

xydmi_rdata Qutput 64 Read Data. This is the returning data from a regdest
(xydmi_cmd = “01") and is qualified when xydmi_rsgpvs
true.

xydmi_reop Output 1 End of packet.

xydmi_rspval — Qutput 1 Response Valid. The xydmi_rspval acknowledges besbl

and write data.

The X and the Y memory regions are mapped ontadideess space with the X region occupying the
lower half of the memory area and Y region occugyhe upper half.
Interface Reset State

Upon a global reset all signals on this interfageset to zero. This is also expected to be the sfa
the interface at time zero for simulation purposes.

XY DMI Behavior

The XY DMI interfaces supports all the command ngevided by the BVCI protocol (Refer to
the Virtual Component Interface Standard). Theofeihg types of operation are supported:

» Read Type + A burst read operation

» Read Type I A single cell read operation of a byte, worahgword (32 bits) or double
longword (64 bits) size.

» Write Type |- A burst write operation

» Write Type Il- A single cell write operation of a byte, worongword (32bits) or double
longword (64 bits) size.

Read Type | Timing Behavior

The memory requesting device issues a read bupséseto the XY memory DMI. A cycle-by-cycle

description of an example follows:

* Time=10ns. The burst access starts, with the address, byigles and read command placed on
the bus orxydmi_address, xydni_be andxydmi_cmd respectively withxydmi_cmdval set to
high. The write datax{ydni_wdata) is ignored.

 Time=20ns. The XY DMI default acknowledges the read reqegtini_cmdack = ‘'1’) and sets
the command acknowledge signal to low so that éx¢ cell in the packet is hot acknowledged

58 ARC® 700 External Interfaces Reference

XY Memory XY DMl interface

immediately. With the cell acknowledged, the adsl{g@gdni_address) is incremented for the
next cell transfer.

* Time=30ns. The request made to XY memory by the XY DMI iarged in this cycle. Wait
cycle on the BVCI command bus

» Time=40ns. The data from XY memory is returned for the rexjureade by XY DMI and is
registered and presented onto the read dataxpusi(_rdara), with the valid signal
(xydmi_rspval) set to high.

* Time=50ns. The response is acknowledgedjyni_rspack being high. This sets the
command acknowledgment signalém7_cmdack) to go high, ready to accept the next command
cell, and the response validygmi_rspval) signal to go low.

 Time=60nsto 130ns, repeats the same process between 10ns to 5@rist the second and
third command cell.

» Time=140ns, The last command cell is acknowledged, whichha7_eop set to high, and set
the command acknowledge signal to low.

* Time=160ns. Read data becomes available on the response bus.

* Time=170ns. Sincexydmi_rspackis low, the response cell has not been acknowtkdgd the
XY DMl interface keeps the response cell for anotlyele on bus.

* Time=180ns. With xydmi_rspack at high, the response cell has been acknowleddesl.
completes the burst (packet) transfer.

‘Ons\ | | ‘Son\s | ‘loo\ns | | | ‘150\ns |

xydmi_cmdval __/ \
xydmi_cmd[1:0] X 01" |
xydmi_address[12:0] Addrl Y Addr2 X Add3__ (I
xydmi_be[7:0] X TI11_1111"
xydmi_eop I .
xydmi_wdata(o3:0] IR
xydmi_cmdack ~— \ [\ [\ [\ [
xydmi_rspval [\ [\ [\ [L
xydmi_rdata[63:0]
xydmi_rspack A

Figure 34 Read Burst Access on XY Memory DMI.

Read Type Il Timing Behavior

The memory requesting device issues a single exaest to the XY memory DMI. A cycle-by-cycle
description of an example follows:

* Time=10ns. The access starts, with the address, byte ersmidaead command placed on the
bus onxydmi_address, xydmi_be andxydmi_cmd respectively withxydmi_cmdvaT set to high.
The end of packet signatydni_eop) is also set to high to indicate that it is a Brarcess. The
write data &yadmi_wdata) is ignored.

* Time=20ns. The XY DMI default acknowledges the read reqegtini_cmdack = ‘1’) and sets
the command acknowledge signal to low so that éx command cell is not acknowledged

ARC® 700 External Interfaces Reference 59

XY DMl interface XY Memory

immediately. With the cell acknowledged, the comdchealid signal kydmi_cmdval) is de-
asserted.

* Time=30ns. The request made to XY memory by the XY DMI iarged in this cycle. Wait
cycle on the BVCI command bus

 Time=40ns. The data from XY memory is returned for the rexjumade by XY DMI and is
registered and presented onto the read dataxpusi(_rdara), with the valid signal
(xydmi_rspval) set to high.

* Time=50ns. The response is acknowledgedjayni_rspack being high. This sets the
command acknowledgment signalém7_cmdack) to go high, ready to accept the next command
cell, and the response validygini_rspvaT) signal to goes low.

‘On\s\ [‘lqns\ [‘Zo\ns\ [‘so\ns\ (. ‘40\ns\ (. ‘59“5‘

xydmi_cmdval [\
xydmi_emd[:0]
xydmi_address{12:0]
xydmi_be[7:0]
xami_cop I U
xydmi_wdata(62:0] INI
xydmi_cmdack \ /

xydmi_rspval / |
xydmi_rdata[63:0]

xydmi_rspack

Figure 35 Single Read Access on XY Memory DMI.

Write Type | Timing Behavior

The memory requesting device issues a write bagstast to the XY memory DMI. A cycle-by-cycle
description of an example follows:

» Time=10ns. The burst access starts, with the address, bygles write data and write
command placed on the bus ewini_address, xydmi_be, xydmi_wdata andxydmi_cmd
respectively withxydmi_cmdvaT set to high.

 Time=20ns. The XY DMI default acknowledges the write requestini_cmdack = ‘1) and
sets the command acknowledge signal to low salieatext cell in the packet is not
acknowledged immediately. With the cell acknowletigbe address«fdni_address) is
incremented for the next cell transfer.

 Time=30ns. The XY DMI made a request to XY memory and isntgd in this cycle. Hence
XY DMI sets the response valid signal@m7_rspval) to high

» Time=40ns. The response is acknowledgedxyyini_rspack being high. This sets the
command acknowledgment signalém7i_cmdack) to go high, ready to accept the next command
cell, and the response validyni_rspval) signal to go low.

 Time=50nsto 100ns, repeats the same process between 10ns to 5@rist the second and
third command cell.

60 ARC® 700 External Interfaces Reference

XY Memory XY DMl interface

 Time=110ns, The last command cell is acknowledged, which has7_eop set to high, and set
the command acknowledge signal to low.

* Time=120ns. Response validxdni_rspval) go high.

* Time=130ns. Sincexydmi_rspackis low, the response cell has not been acknowtkdgd the
XY DMl interface keeps the response cell for anotlyele on bus.

» Time=140ns. With xydmi_rspack at high, the response cell has been acknowleddnes!.
completes the burst (packet) transfer.

‘Ons ‘ 20ns ‘40ns ‘60ns ‘ 80ns ‘ 100ns ‘ 120ns 140ns
T e e e e e e A A O O A |

xydmi_cmdval J \
xydmi_address[12:0] AddrL Y ‘Addr2 Y Addr3 _
xydmi_be[7:0] -(1111 1111" _
ool I x x —
xydmi_rspval [\ [\ [\ [\

xydmi_rspack

|

Figure 36 Burst Write Access on XY DMI

Write Type Il Timing Behavior

The memory requesting device issues a single bwitst requests to the XY memory DMI. A cycle-
by-cycle description of an example follows:

 Time=10ns. The access starts, with the address, byte enatile,data and write command
placed on the bus ovydmi_address, xydmi_be, xydmi_wdata andxydmi_cmd respectively with
xydmi_cmdval set to high. The end of packet signaldni_eop) is also set to high to indicate
that it is a single access.

* Time=20ns. The XY DMI default acknowledges the write requegidni_cmdack = ‘1’) and set
the command acknowledge signal to low so that éx¢ cell in the packet is hot acknowledged
immediately. With the cell acknowledged, the comchaalid signal kydmi_cmdval) is de-
asserted.

 Time=30ns. The XY DMI made a request to XY memory and isntgd in this cycle. And
hence XY DMI sets the response valid signadfri_rspval) to high.

* Time=40ns. The response is acknowledgedjayni_rspack being high. This sets the
command acknowledgment signalém7i_cmdack) to go high, ready to accept the next command
cell, and the response valigygmi_rspval) signal to goes low.

ARC® 700 External Interfaces Reference 61

XY DMl interface XY Memory

‘On\s [. ‘10‘n8 [‘20‘['15 | [‘30‘['15 [. ‘40‘n8 |

xydmicmdval [\
xydmi_cmd]1:0]
xydmi_address[12:0]
xydmi_be[7:0]
xydmi_eop I
xydmi_wdata[63:0]
xydmi_cmdack I

-

xydmi_rspval /—\—
xydmi_rdata[63:0]

xydmi_rspack

Figure 37 Single Write Access on XY DMI

62 ARC® 700 External Interfaces Reference

Chapter 7 — Processor Signals

The processor signals are used to run, clock aedipt the processor core.

The processor signals are covered in the followingsections:
e Processor Control Interface

e Interrupt Unit
e Test

Processor Control Interface

The processor interface signals are used to rurclackl the processor core. The following sections
cover the processor control interface in more Hetai

* Processor Signal List

* Clocks
+ Reset
« Start

* Run

Processor Signal List
The following processor control interface signaksyrappear on the CPU Island:

Table 17 Processor Control Signal List

Signal Direction Description

clk_cpu Input Processor Core Clock

clk_sys Input External Memory System Clock

rst_a Input Reset Asynchronous, and active high.
ctri_cpu_start_r Input Start- Depends on configuration.
ctri_arch_status32_h_r Qutput Run- Set high when processor is halted.
Clocks

The ARC 700 processor is a fully static design, @ses two positive edge clocksk_cpu and
clk_sys.

cTk_cpu is the ARC 700 processor core clockk_sys is the external memory system clock.

These clock nets are not buffered in the desigieest is intended that clock tree synthesis teglmi
will be used.

ARC® 700 External Interfaces Reference 63

Interrupt Unit Processor Signals

The supported clock frequency ratios are deperatettie particular CPU Island interfaces in the
design. For example see tB¥CI Bus Bridge Clock Synchronization Unit

For additional information on alternative CPU Islanterfaces seAHB Bus Bridge ReferencaxXI
Bus Bridge ReferencandARC Legacy Bus Bridge Reference
Reset

The reset netst_a is asynchronous, and active high. ARC Internatioct@mmends that the reset
signal be arranged to be asynchronously appliedwamchronously removed. Reset should be applied
for a minimum of four clock cycles. The synthesisltshould be allowed to buffer tiret_a net.

Start

The start signaktr1_cpu_start_r, is used to start the processor with particulafigarations that
are set to halt-on-reset.

Run

The run signalgctri_arch_status32_h_r is an output signal that is set high when proaeisso
halted.

Interrupt Unit

The ARC 700 system features a configurable intémof that allows selection of 8, 16, or 32
interrupt inputs. The interrupt unit generatesrimigt requests (IRQs) to the CPU and has the wbilit
to bring the CPU out of sleep mode when a validrimipt request is present.

All interrupts can either be pulse or level trigegtias well as having individual mask bits and fsior
levels.

The number of user interrupts lines is dependaoih tipe number of interrupts that are configured in
ARChitect configuration tool.

, Interrupt ARC 700
irq[5-31]_n_a Unit <:‘> Pr ocessor

Figure 38 Interrupt Interface

The following sections cover the interrupt integfdc more detail:
e Feature List

« Interrupt Signal List

* Incoming Request Interface Timing

64 ARC® 700 External Interfaces Reference

Processor Signals Interrupt Unit

Feature List

* Maximum of 26 user-definable IRQs (5 to 31)

* Programmable interrupt type on all IRQs (pulseglev

* The lowest interrupt number has the highest inpenpuiority

* Programmable mask bit on all IRQs

* Programmable priority level (level 1 = low, levetzhigh) on all IRQs

» Software controlled triggers for all IRQs

Interrupt Signal List

The following interrupt interface signals may appeathe CPU Island:
Table 18 Configurable Interrupt Lines

Signal Name Total Number of User ARChitect Direction Purpose

Interrupt Lines Selection
irq[5:7]_n_a 3 8 Interrupts In Interrupt Request signal
irq[8:15]_n_a 11 16 Interrupts In Interrupt Request signal
irq[16:31]_n_a 27 32 Interrupts In Interrupt Request signal

Theirgxx_n_a signal can be level or pulse type and is asynausly applied. If pulse type
interrupts are used, then the minimum width ofdigmal should be twice that of the interrupt unit
clock. When the rgxx_n_a signal is asserted (all interrupts are active libwdises an interrupt
request to the interrupt unit. The interrupt uriit thhen decide if the signal is legal based on the
enable and mask bits. If the interrupt signal tigdevel, then it is up to the signal source to oeenit
once the interrupt has been accepted by the CRasfibuld be done by the interrupt service
routine). If the interrupt type is pulse, then ihierrupt unit will register the signal and it ip to the
interrupt service routine to clear the interruptusyng the AUX_IRQ_PULSE_CANCEL register.

Incoming Request Interface Timing

Figure 39 shows a level type interrupt requestimrigé 10nsi rgx_n_a is asserted (goes low).
Interrupt X is a level type interrupt, thereforedtnains asserted until the issuing device remibves

10 ns,; 20 ns, 30 ns, 40 ns,
| |

clk W

irgx_n_ -

|
|
Figure 39 Example Level Type Interrupt

Figure 40 shows a pulse type interrupt requestindg 10nsi rqx_n_a is asserted for a minimum
period of x2 the clock periodrgx is a pulse type interrupt, therefore the proces=sgisters the
interrupt request, and once serviced, it is thparsibility of the interrupt service routine to @i¢he
interrupt within the interrupt unit (using AUX_IR@ULSE_CANCEL).

ARC® 700 External Interfaces Reference 65

Test Processor Signals

Figure 40 Example Pulse Type Interrupt

Test

The input signaktest_mode_atpg sets the processor in a mode which is optimizeddod fault
coverage. Only present if the configuration recgiseme modification in test mode. Not all
configurations have this signal.

The input signaktest_mode_rambist allows the built in self test (BIST) control unt,ovided by
customers, to gain access to the RAMs. Only prestdm ARChitect optionbist_muxes has been
selected.

The test interface signals are summarized in Thble

Test Signal List

The following test interface signals may appeathenCPU Island:
Table 19 Test Signal List

Signal Direction Description
xtest_mode_atpg Input ATPG Test Mode
xtest_mode_rambist |npyt RAM BIST Test Mode.

66 ARC® 700 External Interfaces Reference

	ARC® 700 External Interfaces Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of Interfaces
	Block Diagram
	Signal Lists

	JTAG (Joint Test Action Group) Communication Module
	JTAG Interface
	JTAG Signal List
	JTAG Pin Connector

	JTAG Programmer’s Model
	The Instruction Register
	The JTAG Status Register (Instruction Code 0x8)
	The Transaction Command Register (Instruction Code 0x9)
	The Address Register (Instruction Code 0xA)
	The Data Register (Instruction Code 0xB)
	The IDCODE register (instruction code 0xC)
	The Bypass Register (Instruction Code 0xF)
	The Boundary Scan Register (Instruction Code 0x0 and 0x1)

	JTAG Port
	The TAP Controller
	The TAP Controller State Machine
	The Debug Port
	The Host Interface to BVCI Target

	Setting Up Read/Write Transactions
	Setting up a Write Access to the ARC 700 Processor or Memory
	Accessing the Status Register
	Setting up a Read Access from the ARC 700 Processor or Memory

	JTAG Port Reset
	PC - JTAG Communications

	Bus Bridge
	Bus Bridge Block Diagram
	BVCI Protocol
	BVCI Signal List

	Bus Bridge Block Diagram
	Clock Synchronization Unit
	Toggle Unit
	Edge Detection
	Phase Detection
	Mask Generator
	Last Phase Detect

	Clock Crossing BVCI Bridge

	Bus Interfaces
	Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)
	MWIC and Bus Bridge Block Diagram
	MWIC to Bus Bridge Signal List
	MWIC Bus Bridge to External Bus System Signal List
	MWIC Unimplemented Signal List
	Big-Endian Configuration
	Interface Timing

	DMP to Memory Bus System (via Bus Bridge)
	DMP and Bus Bridge Block Diagram
	DMP to Bus Bridge Signal List
	DMP Bus Bridge to External Bus Signal List
	DMP Unimplemented Signal List
	Big-Endian Configuration
	Interface Timing

	Closely Coupled Memories (CCM)
	Closely Coupled Memories
	CCM DMI Interfaces
	CCM DMI Signal List
	Interface Reset State
	CCM DMI Behavior

	XY Memory
	XY Memory
	XY DMI interface
	XY DMI Signal List
	Interface Reset State
	XY DMI Behavior

	Processor Signals
	Processor Control Interface
	Processor Signal List
	Clocks
	Reset
	Start
	Run

	Interrupt Unit
	Feature List
	Interrupt Signal List
	Incoming Request Interface Timing

	Test
	Test Signal List

