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Chapter 1 —  Introduction 
An ARC® 700 processor based design supports a number of processor island interfaces. These 
interfaces encompass memory transactions, host debug access and miscellaneous control. The 
following sections introduce the interfaces in more detail: 

• Overview of Interfaces 

• Block Diagram 

• Signal Lists 
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Overview of Interfaces 
A given ARC® 700 design offers several processor island interfaces. These interfaces encompass 
memory transactions, host debug access and miscellaneous control.  

Interfacing to the processor is achieved mainly indirectly through the following components. 

• JTAG communications module 

• Bus Bridge 

• Bus Interfaces 

• Closely Coupled Memory Direct Memory Interface (DMI) 

• XY Memory Direct Memory Interface (DMI) 

• Control Signals (Clock, Reset, etc) 

• Interrupt Unit 

• Memory Management Unit (MMU) – as described in the ARC 700 MMU Reference 

The processor island is the top-level processor island that should be used for integration into a custom 
system. For additional information on alternative CPU Island interfaces see AHB Bus Bridge 
Reference, AXI Bus Bridge Reference, and ARC Legacy Bus Bridge Reference.  

For further information on the operation of the processor core see ARCompact Programmer's 
Reference. 

For information on the processor module hierarchy see the ARC 700 System Reference. 
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Block Diagram 
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Figure 1 Example External Bus System Architecture 

Signal Lists 
Various groups of interface signals may appear on the CPU Island. The following signal lists provide 
more detail on these signal groups: 

• JTAG Signal List 

• BVCI Signal List 

• MWIC Bus Bridge to External Bus System Signal List 

• DMP Bus Bridge to External Bus Signal List 

• CCM DMI Signal List 

• XY DMI Signal List 

• Processor Signal List 
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• Interrupt Signal List 

• Test Signal List 
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Chapter 2 —  JTAG (Joint Test Action Group) 
Communication Module 

The JTAG interface has been introduced as a solution for communicating with the standard ARC 700 
and ARCangel systems.  

The JTAG module draws its interface and protocol from the IEEE STD 1149.1, providing customers 
with a standard that is universally recognized. The module contains logic for communicating with the 
ARC 700 processor and its memory system, providing the host with a high level role where 
transaction parameters are simply specified. 

The following subsections outline principles required in order to communicate with the ARC 700 
processor and system memory via the JTAG module: 

• JTAG Interface 

• JTAG Programmer’s Model 

• JTAG Port 

• Setting Up Read/Write Transactions 

• JTAG Port Reset 

• PC - JTAG Communications 
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JTAG Interface 
The host device communicates with the JTAG module via four interface signals, these four interface 
signals are required in order to satisfy the IEEE STD 1149.1 standard. These interface signals provide 
the host with the ability to control and serially pass data in and out of the module. These signals are 
shown below: 

• TCK  – Test Clock 

• TMS  – Test Mode Select 

• TDI  – Test Data In 

• TDO  – Test Data Out 

An optional JTAG interface signal, Test Reset (TRST*) has been provided to allow asynchronous 
initialization of the JTAG port without supplying a clock. Its use is necessary in simulation, but in 
actual operation it may be tied high. In addition, there is a chip-level signal not specified by the IEEE 
standard: RTCK. This is a copy of TCK that has been re-driven in the I/O pad ring. If the JTAG 
emulator chooses to take advantage of it, by using it to clock in TDO, it can compensate for the cable, 
board, and I/O pad delays to increase the speed at which TCK may be run. This becomes especially 
important if many chips are chained together on the board. 

The module provides various groups of interface signals.  

• The Memory Arbitrator Interface: The first group interfaces to the memory arbitrator (refer to 
the ARC 700 System Components Reference) and allows the module to access system memory.  

• ARC 700 Host Interface: The second group drives the ARC 700 host interface bus, providing 
essential access to the ARC 700 processor's internal register space.  

• Boundary Scan interface: The third group of signals have been provided in order to allow the 
inclusion of a Boundary Scan Register. Refer to The Boundary Scan Register (Instruction Code 
0x0 and 0x1) for a detailed explanation. While this capability remains, the ARC 700 JTAG port 
has been designed to allow on-chip chaining with other TAP controllers. It may provide an easier 
integration with ATPG flow to use the TAP controller produced by the ATPG software, and chain 
it with that of the ARC 700. 

• Miscellaneous signals: The final group of signals are provided for system control: 

 A processor clock signal is provided allowing the module to carry out read and write 
transactions to the devices that are synchronized to the processor clock. The JTAG clock, 
TCK, is designed to run at maximum frequency is 50% of the processor clock. In RTL 
simulation the ratio of system clock to processor clock may affect the maximum frequency of 
TCK. In silicon there are additional timing constraints, for example the time from the 
transition on the input JTAG clock to the output of JTAG TDO must be allowed for.  

 A system clear signal is included allowing the module to be reset asynchronously with all 
devices in the system.  

 An output enable signal, jtag_tdo_zen_n, is provided allowing the output TDO to go high 
impedance when inactive. Tri-state is provided for the case of parallel connection of the other 
driving circuitry to TDO. Should TDO not be connected to any other driving circuitry, the tri-
state output need not be implemented. 
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 The JTAG busy signal, jtag_busy, can be used to provide a helpful indication that there is 
activity on the debug channel, for example to drive an LED on a development board. If not 
required, this signal can be left open. 

Figure 2 illustrates the signals that make up the JTAG module. 
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Figure 2 The JTAG Communications Module 

The TMS input interface signal should be connected to a pull up component as part of the IEEE STD 
1149.1 requirement, thus allowing the module to be reset if the input to TMS is undefined (for 
example high impedance) and TCK is applied. Pull-ups are not required for TDI, TDO or TCK. The 
reset mechanism is described in The TAP Controller State Machine. 

 

JTAG Signal List 
The following JTAG interface signals may appear on the CPU Island: 

Table 1 JTAG Signal List 

Signal Direction Description 

jtag_tdi Input JTAG data input  
jtag_tms Input JTAG mode select 
jtag_tck Input JTAG clock  
jtag_trst_n Input JTAG reset  
jtag_tdo Output JTAG data output  
jtag_tdo_zen_n Output JTAG TDO output enable signal 
jtag_rtck Output JTAG re-timed clock  
jtag_busy Output JTAG busy signal 

JTAG Pin Connector 
This is the recommended board connector to attach a debug emulator to the JTAG signals on the 
board. It is a 20-pin IDC connector, with pins on 0.100” centers, keyed and shrouded. 
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Figure 3 Recommended JTAG Pin Connector, Top View 

Table 2 JTAG Pin Connector Descriptions 

Signal Description and Notes 

TCK Clock input to debug port. Must be pulled to defined state on board for so as 
not to clock circuitry when no debug emulator is connected. 

RTCK  Clock output. If not implemented on chip, drive from TCK on board. 
TMS Test Mode Select input. Must be pulled up on board. 
TDI Test Data In input. Must be pulled up on board. 
TDO Test Data Out output. Must be pulled up on board. 
TRST* Test Reset. Must be pulled up on board. 
VTref Target Reference Voltage. Should be tied to Vdd of chip. 
Vsupply Supply voltage for emulator pod. Should be tied to Vdd of chip. 
GND Ground. Tie to Vss of chip. 

While it is not necessary, the speed of the JTAG debug connection can be maximized if TDO and 
RTCK use drivers capable of driving 50-Ohm transmission lines. 

JTAG Programmer’s Model  
The JTAG module includes eight internal registers as shown in Table 3. The host can define a read or 
write transaction to a memory location or an ARC 700 register through some of these internal 
registers. Six of the eight registers are collectively referred to as data registers (IEEE STD 1149.1). 
The remaining registers are the instruction register, which is central in the role of accessing all data 
registers and the Boundary Scan register.  

Table 3 JTAG Registers 

Value Code JTAG Register TYPE 

N/A N/A INSTRUCTION REGISTER* Instruction 

0x8 1000 JTAG STATUS REGISTER Data 

0x9 1001 TRANSACTION COMMAND REGISTER Data 

0xA 1010 ADDRESS REGISTER Data 

0xB 1011 DATA REGISTER Data 

0xC 1100 IDCODE REGISTER Data 

0xF 1111 BYPASS REGISTER* Data 

0x0/0x1 0000/0001 BOUNDARY SCAN REGISTER* BSR 

 



JTAG (Joint Test Action Group) Communication Module JTAG Programmer’s Model 

ARC® 700 External Interfaces Reference      17 

NOTE * Required as part of IEEE STD 1149.1 specification. 

Each of the registers are described in the following sections: 

• The Instruction Register 

• The JTAG Status Register (Instruction Code 0x8) 

• The Transaction Command Register (Instruction Code 0x9) 

• The Address Register (Instruction Code 0xA) 

• The Data Register (Instruction Code 0xB) 

• The IDCODE register (instruction code 0xC) 

• The Bypass Register (Instruction Code 0xF) 

• The Boundary Scan Register (Instruction Code 0x0 and 0x1) 

The Instruction Register 
The Instruction register is used to gain access to all data registers. Each data register is addressed by a 
unique 4-bit instruction code. 

31                           4 3 2 1 0 

Reserved Inst Code  

In order to access the required data register, the correct code should be written into the instruction 
register. Figure 4 illustrates the relationship between the instruction and data registers. The instruction 
shift register is loaded with 0x1 in Capture-IR, so that external circuitry, by looking for a transition 
when in Shift-IR, can detect a stuck-at fault in the JTAG chain. 

NOTE Because of this behavior, which is specified in IEEE 1149.1, the current contents of the instruction 
register can not be read by the external circuitry. The register itself is initialized to point to the 
IDCODE register in Test-Logic-Reset. 
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Figure 4 Data Registers Access via the Instruction Register 

In addition to accessing the data registers (refer to subsections The JTAG Status Register (Instruction 
Code 0x8) to The Bypass Register (Instruction Code 0xF)), the instruction register is also used to 
select a test sequence that should be applied to the device. These test sequences use a special data 
register known as the Boundary Scan Register (refer to The Boundary Scan Register (Instruction 
Code 0x0 and 0x1)). 
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The JTAG Status Register (Instruction Code 0x8) 
The JTAG Status Register is read only and is used by the host device to obtain important information 
on the state of the JTAG module or the result of an ARC 700 processor or memory access. The  bits 
of the register are assigned as follows. 

31                           4 3 2 1 0 

Reserved PC RD FL ST 

 
31       24 23                   4 3 2 1 0 

     

Each field in the JTAG Status register reflects the following information: 

• Bit 0 – Stalled (ST) flag  indicates that the current transaction has stalled. This flag is set when 
the ARC 700 processor asserts the hold_host signal to lengthen the duration of a read or write 
transaction.  

• Bit 1 – Failure (FL) flag indicates that a read (or write) has failed when it is true. For example, 
this flag would be set if an access to a core register is attempted when the processor is running. 
The failure flag is cleared automatically when a new transaction is started. 

• Bit 2 – Ready (RD) flag indicates whether the JTAG module is available to accept another 
transaction command. This flag is set when a transaction has just completed or when the JTAG 
module is idle. 

• Bit 3 – PC_SEL (PC) flag, is set to the value that is assigned to the AUX_PCPORT auxiliary 
register (refer to the Extension Functions section in the ARCangel development board manual). 
For example, this flag would be set if 1 was written to the AUX_PCPORT auxiliary register, and 
cleared if 0 was written to AUX_PCPORT. 

• Bits 31 down to 24 – Reserved. 

The Transaction Command Register (Instruction Code 0x9) 
The Transaction Command Register is used to specify the communication transaction that should be 
performed.  

31                           4 3   0 

Reserved Command  

The JTAG module supports eight different accesses or transactions, which are shown in Table 4 with 
their associated encoding. 

Table 4 JTAG Read/Write Transactions 

Value Code Communication Transaction 

0x0 0000 Write to a memory location 

0x1 0001 Write to a ARC 700 core register 

0x2 0010 Write to a ARC 700 auxiliary register 

0x3 0011 NOP, The register is initialized to this value 

0x4 0100 Read from a memory location 

0x5 0101 Read from a ARC 700 core register 

0x6 0110 Read from a ARC 700 auxiliary register 
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Value Code Communication Transaction 

0x7 0111 Write to a MADI* register 

0x8 1111 Read from a MADI* register 

 

NOTE The MADI register is only available where the debugging of multiple ARC 700 processor systems is 
required. The MADI system is no longer the recommended way of debugging multiple cores on a 
chip. ARC now recommends that each processor have its own JTAG port, and that these be chained 
together by distributing TCK, TMS, and TRST* in parallel, and connecting the TDO from one 
processor to the TDI of the next. 

 

The Address Register (Instruction Code 0xA) 
The Address Register is used to supply the address for read and write transactions to the ARC 700 
registers and system memory. 

31                               0 

Address Register 

Accesses to memory must always be given in bytes. Access to the ARC 700 internal registers is 
specified by their register numbers. The value contained in this register is automatically incremented 
by four (a memory access) or one (an ARC 700 register access) when a read or write transaction has 
completed. This feature is used to save valuable cycle time when downloading / uploading a stream of 
data, hence the register does not need to be rewritten with the next address value. 

The Data Register (Instruction Code 0xB) 
The data register performstwo functions. When data is written to this register, it is placed into a write 
buffer that drives two write data buses, one for the ARC 700 host interface and other for the memory 
arbitrator interface. The bus is used to specify the data contents that should be written when 
performing a write transaction. 

31                               0 

Address Register 

When reading this register a read buffer is selected. The read buffer is used to store data retrieved 
from the target device during a read transaction. The appropriate read data bus (arbitrator or host 
interface) is selected according to which device the host is accessing. 

The IDCODE register (instruction code 0xC) 
The IDCODE register is used by the JTAG emulator to identify the core as an ARC 700 core. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

JTAG 
Version ARC Number ARC Type ARC JEDEC Manufacturer’s Code 1 

Each field in the IDCODE register reflects the following information: 

• Bits 31 down to 28 — These bits define the version of the JTAG module. Currently set to the 
value 0x1. 

• Bits 27 down to 18 — This field will be set by the designer to the number of ARC processors 
swithin the system. It will have the same value as the corresponding field in the IDENTITY 
register in auxiliary space, if there are fewer than 256 ARC processors in the system. 
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• Bits 17 down to 12 — This field will be set to 0x03 to identify the processor type as an ARC 700 
type. 

• Bits 11 down to 1 — This field contains the code assigned to ARC International by JEDEC, 
encoded as specified in the IEEE 1149.1-2001 standard. ARC has been assigned the 
manufacturer’s code 0x58 in group five, so this field encodes to 0100 101 1000. 

• Bit 0 — This field is fixed at 1, as specified in the IEEE 1149.1-2001 standard. This is used, 
along with the previous field, to allow automatic discovery when the chain is initialized. JEDEC 
will never assign the manufacturer’s code 0x7F in group 0. The JTAG emulator, therefore, can 
shift the 32-bit IDCODE 0x000000FF into TDI at the beginning of the chain after reset. The 
standard specifies that upon receiving a TCK when in the Reset-Test-Logic state, the instruction 
register will be initialized to point to the IDCODE register if it exists, and to the BYPASS register 
otherwise. In Capture-DR, the shift register is loaded with this 32-bit code if IDCODE is in the 
instruction register, and with a single bit of 0 if BYPASS is. Thus the external circuitry can 
examine TDO in Shift-DR, and know if it’s zero that this TAP controller has only a 1-bit bypass 
register, and if it’s one that this TAP controller has a 32-bit IDCODE register. By shifting through 
looking for these until the 0x000000FF appears, the emulator can uniquely identify the number 
and kind of devices in the chain. 

The Bypass Register (Instruction Code 0xF) 
The Bypass Register is required as part of the IEEE STD 1149.1 standard.  

31                              1 0 

Reserved BP 

When this register is selected, the serial data input (TDI) is connected to the serial data output (TDO) 
through this register. The data on TDI is passed to TDO on the rising edge of the JTAG clock TCK 
when in Shift-DR, and the register is initialized to 0 in Capture-DR. In all other states, the data in this 
register is held.. The Bypass register is automatically selected when a reset is applied to the JTAG 
module allowing the data on TDI to bypass the core logic to TDO.  

The Boundary Scan Register (Instruction Code 0x0 an d 0x1) 
The Boundary Scan register is selected when the four-bit code 0000 or 0001 is written into the 
Instruction register. This register is used to retrieve the logic state of a device and control data on its 
input and output pins. The register does not exist within the module and must be provided externally 
(it is connected to the JTAG module via the boundary scan interface). The codes 0000 and 0001 
relate to the EXTEST and SAMPLE/PRELOAD instructions as shown in Table 5. These boundary 
scan instructions are necessary as part of the IEEE STD 1149.1. Refer to the Application Note 
'Interfacing the JTAG Module to a Boundary Scan Register' for more detail. 

NOTE Since the ARC 700 TAP controller may be chained on the chip with other TAP controllers, use of a 
separate TAP controller known to be compatible with the user’s test software is recommended. 

 

Table 5 Instructions that Employ the Boundary Scan Register 

Value Code Instruction 

0x0 0000 EXTEST 

0x1 0001 SAMPLE/PRELOAD 

The instructions contained in Table 6 have also been defined in the IEEE STD 1149.1. These are 
optional instructions and are not supported with version 1.0 of the JTAG module. 
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Table 6 Non Implemented Instructions 

Instruction Description 

INTEST Performs an internal test (uses the boundary scan register) 

RUNBIST Runs an internal core logic test (additional logic) 

USERCODE Captures user defined information about a device (additional logic) 

JTAG Port 
The block diagram shown in Figure 5 shows how the JTAG communications port integrates within an 
ARC 700 system. It is linked to the host interface of the ARC 700 processor in addition to system 
memory via the Data Memory Pipeline (DMP). 
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Figure 5 A JTAG Port with an ARC 700 Processor 

• The TAP Controller 

• The TAP Controller State Machine 

• The Debug Port 

• The Host Interface to BVCI Target 

The TAP Controller 
The Test Access Port (TAP) controller is central to the operation of the JTAG module as shown in 
Figure 6. All internal register accesses are performed serially using the TAP controller. An 
accompanying block, the Debug Port, serves as the workhorse, performs the majority of internal 
(accessing internal JTAG registers) and external (performing BVCI transactions) tasks. The Debug 
Port and the TAP Controller are clocked off of TCK, and a separate module synchronizes the BVCI 
initiator signals to the system clock. On the other side of the BVCI Debug Interface, there is a module 
that contains the address, data, command, and status registers, and handles the host interface and 
DMP transactions: the Host Interface to BVCI Target module. This allows the user, if desired, to 
replace the JTAG port, either by a custom interface to an external debugger, or to another processor in 
a master/slave configuration.. 
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Figure 6  Internal Structure of the JTAG Port 

The TAP controller is an internal state machine that is controlled entirely by the host using the TMS 
and TCK interface signals. The controller is used to indirectly initiate communication transactions and 
access the internal JTAG registers. The state machine consists of 16 states that are connected together 
as shown in Figure 7. 
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Figure 7 TAP Controller State Diagram 

Each state contains at least one entry point with two possible exit paths. A state transition is 
performed on the rising edge of TCK. The decision to determine the exit path is made according to the 
logic level of TMS. 
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The Test-Logic-Reset state is used to initialize all internal JTAG registers and control signals 
to default contents and inactive logic levels respectively. The state is entered immediately when 
TRST* is asserted. In addition, this state can also be entered (regardless of the current state) at any 
time during operation by holding TMS high and applying a maximum of five clock pulses on TCK.  

The Run-Test/Idle state always precedes the Test-Logic-Reset, Update-DR and 
Update-IR states on the rising edge of TCK when TMS is low. This state is employed to initiate a 
read/write access  or place the JTAG module in the idle state. The read/write access defined by the 
address, data and command registers only occurs once on entry to Run-Test/Idle. 

The remaining section of the state diagram (in Figure 7) contains two state sequence structures that 
are used to access all internal JTAG registers. Registers can be written to or read from serially using 
the TDI and TDO signals along with the aforementioned TCK and TMS signals. Both structures are 
identical, however, as denoted by the mnemonics IR and DR, one structure is used to access the 
instruction register and the other dedicated solely to accessing all data registers. 

An internal JTAG register is accessed by placing the TAP controller into the appropriate scan 
structure (Select-DR-Scan or Select-IR-Scan). The data contents of the selected register 
are loaded into a shift register in the Capture-xR state. The state is then entered from the 
Select-xR-Scan state by pulling TMS low and applying a clock pulse on TCK. Capture occurs 
when the Capture-xR state is exited. 

The shift register is used to shift data into the chain from TDI (write phase) simultaneously shifting 
data out of the chain at TDO (read phase). 

By holding TMS low and applying a second clock pulse on TCK the TAP controller goes into the 
Shift-xR state. The Tap Controller remains in the Shift-xR state when TMS is held low. This 
state allows data to be loaded serially (least significant bit first) into the shift register. The TDI signal 
is always sampled on the rising of edge of TCK, starting on the second entry into the Shift-xR 
state. The data shifted out is placed on TDO on the falling edge of TCK starting on the first entry into 
the Shift-xR state. The last sample of TDI is always performed when exiting the Shift-xR 
state. For instance, when the instruction register contains the BYPASS instruction, a 0 is loaded into 
the 1-bit bypass register on the clock that exits Capture-DR and enters Shift-DR. At this point, 
the 0 will appear on TDO. On the next clock, TDI will appear on TDO, and data will continue to be 
shifted through until the final TDI is shifted to TDO on the clock which exits Shift-DR and enters 
Exit1-DR. 

When the data is finally shifted in or out of the shift register, the selected JTAG register is updated 
with the shift register contents when the TAP controller is placed into the Update-xR state. 
Updating occurs on the falling edge of TCK after the state is entered. 

The remaining states Pause-xR and Exit2-xR are used to stall the shift process if the data to be 
shifted in cannot be presented in time for the next rising edge of TCK (assuming a continuous 
frequency on TCK). 
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Figure 8 Loading Data into the Shift Register 

The timing diagram in Figure 8 illustrates the concept of shifting data into the shift register using 
TCK, TMS & TDI. The diagram illustrates the host device writing to the instruction register with the 
four-bit value 1010, thus selecting the Address register. In the capture stage the four-bit value 0001 
is loaded into the shift register ready to be shifted out. The instruction register is not updated (and the 
Address register is not selected) with the shift register contents until the Update-IR state is entered. 
Following the Update-IR state the Select-DR-Scan state structure is entered to access the 
Address register. 

During the Capture-IR phase the four-bit value 0001 is always loaded into the shift register, 
regardless of the instruction register contents. The first two least significant bits aid in diagnosing 
faults along the IEEE 1149.1-1990 bus. 

The Debug Port 
The debug port module contains all the registers specific to the JTAG interface. This includes the 
instruction and data shift registers, the instruction register itself, the bypass register, and the IDCODE 
register. It also contains a restricted BVCI initiator, which, in conjunction with the system clock 
synchronization module, is responsible for access to the address, data, transaction command, and 
status registers, and for initiation of read and write accesses. It must be stressed that the debug BVCI 
interface is completely separate from the memory BVCI interfaces. The address space of the debug 
BVCI interface contains only six valid addresses in its stock configuration: the addresses of the 
address, data, transaction command, and status registers, along with two special addresses which, 
when written with any data, cause the read/write access to be initiated and the address, data, and 
command registers to be reset, respectively. 

The Host Interface to BVCI Target 
The address, data, status, and transaction command registers are to be found in the host interface to 
BVCI target module (as shown in Figure 9). It contains a state machine, which performs all read and 
write bus transactions that are supported by the JTAG module. This is providing there is a valid code 
in the Transaction Command register; an access is initiated by placing the TAP controller into the 
Run-Test/Idle state, which causes the debug port to write the do_cmd address on the BVCI 
interface. This request is then fed to the state machine. The scheduler is responsible for verifying 
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transaction requests and providing the mechanism that allows the host device and the JTAG module 
to maintain a strict synchronizing relationship. 
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Figure 9 Internal Structure of the Host Interface t o BVCI Target Module 

The scheduler verifies a transaction request from the host device by checking the value contained in 
the Transaction Command register. The transaction request signal is asserted only when the 
Transaction Command register contains a valid code and a write to the do_cmd address occurs on the 
debug BVCI interface. The scheduler asserts a transaction request signal to start the defined bus 
transaction. The BVCI target always responds to all commands in a single cycle. It is the 
responsibility of the debugger to maintain synchronization by polling the status register for the 
READY bit after an access has been started. 

Setting Up Read/Write Transactions  
A guide through the stages of defining and initiating read and write accesses: 

• Setting up a Write Access to the ARC 700 Processor or Memory 

• Accessing the Status Register 

• Setting up a Read Access from the ARC 700 Processor or Memory 

Setting up a Write Access to the ARC 700 Processor or Memory 
A write access requires placing the TAP controller into the Test-Logic-Reset state. This should 
reset the JTAG module. This initializes all the internal JTAG registers to default values and all 
interface control signals to inactive logic levels. This initialization process is performed by asserting 
TRST* or by holding TMS high and applying a maximum of five clock pulses on TCK. This will 
ensure that when the Run-Test/Idle state is entered a bus transaction is not triggered from a valid 
code already contained in the Transaction Command register.  

The reset procedure is not required for every read and write access, and is performed only when there 
has been a system reset. The next stage is to set-up the transaction parameter registers. These include 
the Address register, Data register and the Transaction Command register. 

The contents of the Address and Data registers are loaded with the appropriate values so that the write 
access can be performed on the ARC 700 processor or to memory. Firstly, the instruction register is 
loaded with the code for accessing the Data register. This is accomplished by entering the Select-
IR-Scan state and updating the Instruction register. Then the code 1011 for the Data register is 
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serially loaded in the SHIFT-IR state. The timing diagram for writing the instruction register with 
the code 1011 which selects the Data register is shown in Figure 10. 
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Figure 10 Loading the Instruction Register 

X =Don’t care, Z = high impedance 

The Select-DR-Scan state is then selected to serially load in the data to be employed by the write 
data bus when write access is performed. This is shown in the timing diagram in Figure 11.  
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Figure 11 Loading the Data Register 

The Address register is now accessed by loading the code 1010 into the instruction register. We then 
enter the Select-DR-Scan state structure and serially load in the data to be used on the address 
bus.  

The last stage involves writing the Transaction Command register with the code instructing the JTAG 
module to perform a write transaction to either the memory or the ARC 700 registers. 

Once all the transaction parameters have been setup,  the write transaction is started by placing the 
TAP controller into the Run-Test/Idle state.  

To obtain information about the transaction, the JTAG Status register is accessed. Since this is a read 
only register the signal supplied on TDI is ignored when the register contents are shifted out through 
TDO. The appropriate bit fields are then checked to verify a write transaction was performed. 

Accessing the Status Register 
The JTAG Status register is accessed in the following way, the first bit in the Status register (refer to 
The JTAG Status Register (Instruction Code 0x8)) is shifted out to determine whether the JTAG 
module has been stalled. If the stalled bit is set, then the Select-DR-Scan state structure is exited 
and returned to later. This happens if a requested transaction is already underway. 
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If the JTAG module is not stalled, then the second bit is shifted out of the Status register to determine 
whether that transaction has failed. If the failed bit is set then the Select-DR-Scan state structure 
is exited. 

If the failed bit is not set then the ready bit is shifted out to determine whether the transaction has 
completed or not. If the ready bit is set, then the transaction has finished and a new transaction can be 
started. If it has not been set, then the Select-DR-Scan state structure is exited and the above 
procedure is repeated. 

The PC_SEL is an optional bit that does not need to be shifted out. 

Setting up a Read Access from the ARC 700 Processor  or Memory 
Setting up a read transaction follows almost the same procedure as setting up a write transaction. 

The Address register is accessed by writing the 4 bit code 1010 into the instruction register. 
Select-IR-Scan state structure is selected and the code 1010 is serially loaded. When the 
Update-IR state is entered the instruction register is updated and the Address register is selected.  
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Figure 12 Loading the Instruction Register (Select Address Register) 

The data register does not need to be accessed at this stage as a read transaction is being performed. 

The last stage of setting up the transaction parameter registers involves writing to the Transaction 
Command register with the required read transaction. 

When all the transaction parameters have been set up the access is started by placing the TAP 
controller into the Run-Test/Idle state.  

To obtain information about the transaction, the JTAG status register is interrogated. Since this is a 
read only register the signal supplied on TDI is ignored when the register contents are shifted out 
through TDO. The appropriate bit fields are then checked to verify the read transaction. Refer to 
Accessing the Status Register for a standard routine on how to decode the JTAG Status register. 

When the transaction has completed successfully the data register is selected. Select-IR-Scan 
state structure is selected and the code 1011 is serially loaded into the instruction register. The 
Select-DR-Scan state is then entered and data is shifted out from the selected device. 

JTAG Port Reset 
When implementing a system with a JTAG port, pin SS1 must be connected to logic on the board 
such that, when the PC sets signal SS1 low (active), signal xclr will be driven low to reset the ARC 
700 processor. 
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PC - JTAG Communications 
The ARCangel3 (AA3) Development board features an interface to a bi-directional PS/2 parallel port. 
This port allows the following functions to be performed: 

• start, stop and single step the ARC 700 processor 

• read/write all core registers 

• read/write all auxiliary registers 

• read/write external memory 

• perform system reset 

• generate a ARC 700 interrupt 

With the exception of resets, all functions are performed by downloading a 32-bit address/control 
word, followed by 32 bits of send or receive data. The 32 bit values are sent serially, least significant 
bit first. 

Table 7 shows a summary of the signals in use on the parallel port connector.  

Table 7 JTAG Port Signals 

Pin Driver Signal Function 

1 pc TCK Test Clock - Used to control data flow. Data from the PC 
latched on rising edge.   

2   

3   

4   

5   

6   

7   

Not used 

8 pc TMS Test Mode Select – used to select the TAP controller states 

9 pc TDI Test Data In - Serial Data input 

10   Not used 

11 aa busy Valid for AA3. 

Set high whenever AA3 JTAG port is in non-idle state. 

Drives the right-hand LED on AA3. 

12   Not used 

13 aa TDO Test Data Out – serial data out 

14   Not used 

15   Not connected 

16 pc ss0 Valid for AA3. See following page. 

17 pc ss1 Valid for AA3. See following page. 

18  0v  

19  0v  
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Pin Driver Signal Function 

20  0v  

21  0v  

22  0v  

23  0v  

24  0v  

25  0v  

As a requirement for the SeeCode DLL an external reset signal should be provided in the JTAG 
interface version of the ARC 700 processor allowing the chip to be reset. There is a soft reset 
mechanism in the JTAG module that is used to reset JTAG module alone. 

ss0 and ss1 are used as follows when a JTAG comms port is implemented on the AA3 development 
board. At the D25 connector to the AA3 board, the functionality of ss0 and ss1 is: 

ss0 ss1 

0 0 Reset the ARC 700 system on the FPGA 

1 0 FPGA Configuration download 

0 1 ARC 700 system in normal operation 

1 1 ARC 700 system in normal 
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Chapter 3 —  Bus Bridge 
A bus bridge provides several useful architectural functions. The bridge provided performs the 
following functions. 

• Bus protocol translation 

• Bus timing registering  

• Clock crossing  

Bus protocol translation enables the ARC 700 design to interface to any bus topology that uses a 
specific bus protocol. The ARC 700 processor uses native BVCI (mandatory signaling subset as 
defined by pages 27, and 29 - 30 of the VSI Alliance Virtual Component Interface Standard Version 2 
(OCB 2 2.0)). In order to interface to a non-BVCI memory system, an appropriate bus bridge is 
needed that can perform BVCI to non-BVCI bus protocol standards conversion. The default bridge 
that is included in an ARC 700 processor build performs no bus protocol translation, therefore the 
default memory interfacing standard it BVCI.  

Bus timing isolation is used to register signals that are late arriving (relative to the rising edge of the 
CPU clock) from the various processor components, such as the instruction and data caches. The 
output of the bridge interface ensures that a transaction starts on the rising edge of the clock, 
providing a complete cycle for any proprietary memory subsystem.  

Clock crossing provides the ability to support a different clock speed on the system bus to that of the 
processor internal bus (BVCI). 

The following sections describe the bus bridges in more detail: 

• Bus Bridge Block Diagram 

• BVCI Protocol 

• Bus Bridge Block Diagram 

• Clock Synchronization Unit 

• Clock Crossing BVCI Bridge 

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI 
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference. 
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Bus Bridge Block Diagram 
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Figure 13  Example of a Typical ARC 700 System 

BVCI Protocol 
Basic Virtual Component Interface (BVCI), is a sub-set of the Virtual Component Interface (VCI) 
standard, and it is a protocol standard resulting from the work of the On-Chip Bus Development 
Working Group of the Virtual Socket Interface Alliance (VISA). This open standard was written to 
provide a general interface specification for Virtual Components (hardware Intellectual Property) so 
that they can be easily used to built System-on-Chip (SoC). Designed primarily as a point-to-point 
on-chip protocol, it is technology independent but has the advantage of being a powerful protocol, 
and yet inherently efficient and simple to implement. The VCI standard defines three levels of 
Complexity, and they are, in the order of complexity, Peripheral VCI (PVCI), Basic VCI (BVCI) and 
Advance VCI (AVCI). PVCI protocol is a sub-set of BVCI and AVCI adds onto BVCI by specifying 
optional signals that can be added.  

The internal processor bus protocol implements BVCI. BVCI defines an inherently split protocol. It 
allows multiple access commands to be sent from an initiator interface to a target interface before 
data or responses of the commands are returned. Its flexibility also makes it suitable for most 
applications, and makes it relatively easier to translate to other protocols.  

With the BVCI protocol, individual access commands are sent as cells over a synchronous command 
bus. The read data and access response are then returned as cells over a separate response bus. These 
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cells are combined to form packets (burst transfers). Handshaking between initiator and target 
interface at cell level is performed using simple cell valid and acknowledgement signals. One or more 
cells are packaged into packets, using additional signals to denote the last cell of a packet and define 
the addressing scheme. 

Detailed information on the BVCI protocol may be obtained from: 

• VSI Alliance - www.vsi.org: Virtual Component Interface Standard (v2.0 - OCB 2 2.0) 

BVCI Signal List 
The following BVCI interface signals may appear on the CPU Island, where * is the particular BVCI 
signal group: 

Table 8 BVCI Signal List 

Signal Direction Description 

*_address[31:0] Output Physical Byte Address. It needs to be updated on every cycle 
during a burst. 

*_be[7:0] Output Byte Enables. They can be byte, word, long word or double 
long words sized transactions. 

*_cmd[1:0] Output Command. The types that can be issued are: 

• Read – 0x1  

• Write – 0x2 

• Locked Read – 0x3 
*_cmdval Output Command Cell Validate. The values on the command bus are 

valid when this signal is true. 
*_eop Output End of Packet. This signal is asserted on the last burst cycle 

to indicate the end of that burst request. 
*_plen[5:0] Output Packet Length. Describes the packet length in bytes: 

• Byte – 0x1 

• Word (16 bits) – 0x2 

• Longword (32 bits) – 0x4 

• Burst of 32 bytes (4 cells packet) – 0x20 
*_wdata[63:0] Output Write Data. This is the data from a write. 
*_cmdack Input Command Acknowledge. Acknowledges the valid command 

cell. 
*_rdata[63:0] Input Read Data. This is the returning data from a read request. 
*_reop Input End of packet on the response bus. 
*_rspval Input Response Valid. 
*_rerror Input Response Error. Bus errors are transferred directly to the 

ARC 700 core via the BVCI interface.  

 

http://www.vsi.org/
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Bus Bridge Block Diagram 
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Figure 14 Bus Bridge Structure (IBUS) 

Logic that is contained within the bus bridge is referred to as the IBUS. The name Internal Bus is 
derived from the concept of the processor island. A processor island denotes a collection of processor 
specific components that operate from a single processor clock. Processor Island components natively 
make use the BVCI protocol; therefore the IBUS protocol is BVCI. 

The bridge is made up of two sub-modules and they are: 

• Clock Crossing Bridge 

• Clock Synchronization Unit 

The Clock Crossing Bridge (CBRI) is responsible for converting accesses from a processor island 
component (such as the instruction cache), which is on the CPU clock domain (clk_cpu) onto the 
memory system clock domain (clk_sys). The supported frequency ratios of clk_cpu to clk_sys are 
1:1, 2:1, 3:1 and 4:1, and both clocks have to be phased locked and clock tree balanced. This module 
is also responsible for isolating the timing within the internal bus from that of the memory system 
bus. 

The Clock Synchronization Unit (CKSYN) is responsible for keeping track of the phase relationship 
between clk_cpu, used within the processor island, and clk_sys. This unit sends out synchronization 
signals to the bridge to help it latch and transfer data correctly. 

All modules in the bridge module, except CKSYN, supports clock gating by generating a busy signal 
whenever there are outstanding accesses being handled. 

Clock Synchronization Unit 
The Clock Synchronization Unit, called CKSYN, is used to provide synchronization signals to the 
bridge so as to ensure that data on the BVCI bus can be transferred correctly across the clock domain. 
This module generates a synchronization signal to support processor clock to system clock frequency 
ratios of 1:1, 2:1, 3:1 and 4:1. Both clocks must be phased locked. 

Figure 15 shows the design of the clock synchronization unit. 
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Figure 15 Design of the CKSYN 

The CKSYN unit is used to generate a pulse on the synchronization signal (sync) that correspond to 
the last main clock period that resides in the system clock domain. It does this without having to 
resort to the use of the clock signals themselves as input signals, and without the need for the user to 
configure the hardware via software programmable registers or via configurations during RTL 
generation. This allows the module to be placed and routed without special consideration, allowing 
the user to avoid complicated issues often related to using clocks as signals, and easing the task of 
choosing or changing the system bus frequency throughout the SoC development cycle. 

The CKSYN uses a number of logic units to generate the synchronization signal.  

• Toggle Unit 

• Edge Detection 

• Phase Detection 

• Mask Generator 

• Last Phase Detect 

Toggle Unit 
The Toggle Unit generates a toggle signal (toggle) that changes at every rising edge of the system 
clock (clk_sys). 

Edge Detection 
The Edge Detect unit detects the rising edge of the toggle signal on the CPU clock domain. This edge 
signal (edge) will always go high at the first CPU clock (clk_cpu) period within a system clock 
period (clk_sys).  

Phase Detection 
The Phase Counter Unit counts up continuously and gets cleared whenever the edge signal is high. 
Hence the counter always counts up to one less than the number of CPU clock cycles that fit in the 
system clock cycle. Therefore, for example, for a CPU clock to system clock frequency ratio of 4:1, 
the counter counts continuously from 0 to 3. The range of clock ratios supported is dependent on the 
width of the counter, with the largest ratio supported at 2N:1 for a N bit counter. For the bridge to 
support up to 4:1, the counter only needs to be two bits wide. 
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Mask Generator 
The Startup Mask Generator unit is basically a 2-bit shift register that turns the synchronization mask 
off (sync_mask = 1) after two detected edges of the toggle signal. This mask is used to block incorrect 
synchronization signal that can be generated during the start-up of this module after global reset. 

Last Phase Detect 
The Last Phase Detect unit is used to generate a pulse at the last CPU clock cycle within the system 
clock cycle. Since it only needs to support up to 4:1 clock ratios, this module has been simplified. A 
2-bit register is used to capture the count value at every toggle edge and it (ratio) represents the clock 
ratio of the two different clocks, with “00” representing 1:1, “01” representing 2:1, “10” representing 
3:1 and “11” representing 4:1. This value is then used to select from four different pulses that are 
generated, (each pulse refers to a specific clock ratio). The first pulse type is for ratio 1:1 where the 
pulse is always on. The second pulse type is for ratio 2:1, where the signal is set to high every time 
the count value is at “01”. The third pulse type is for ratio 3:1, where the signal is set to high when the 
count value is “00”. Finally the fourth pulse type is for ratio 4:1, where the signal is set to high when 
the count value is “01”. The selected pulse signal is then combined with the mask signal through the 
AND gate, and registered to become the synchronization (sync) output. 

NOTE During global reset, all flops, registers and the counter are set to zero. 

Figure 16, Figure 17, Figure 18 and Figure 19 show four example timing diagrams when dealing with 
4:1, 3:1, 2:1 and 1:1 clock ratios respectively. 
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Figure 16 CKSYN Timing Diagram at 4:1 Clock Ratio 
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Figure 17 CKSYN Timing Diagram at 3:1 Clock Ratio 
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Figure 18 CKSYN Timing Diagram at 2:1 Clock Ratio 
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Figure 19 CKSYN Timing Diagram at 1:1 Clock Ratio 
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Clock Crossing BVCI Bridge 
The CBRI is used to convert accesses between the two clock domains (clk_cpu and clk_sys). The 
supported frequency ratios of clk_cpu to clk_sys are 1:1, 2:1, 3:1 and 4:1, in the bridge module. 
However, this sub-module can support any ratios as long as the CPU clock is the same or higher 
frequency than system clock, and where it is higher, it is multiple times the frequency of the system 
clock. Both clocks have to be phased locked and clock tree balanced. This module is also responsible 
for isolating the timing of the internal bus and the BVCI System Bus from each other. 

The CBRI cannot perform data packing and unpacking when converting access from one clock 
domain to another, and therefore, is essentially a bus repeater. It is capable of handling the crossing 
clock domain with the help of the CKSYN unit.  
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Figure 20 Design of the CBRI - Resets Not Shown 

The CBRI is made up of a number of logic units: 

• A command bus repeater module, used to deal with the command bus timing isolation.  

• A response bus repeater module, used to deal with the response bus timing isolation 

• Handshaking gating logic, used to ensure correct handshaking when crossing the clock domain  

• An OR gate to combine the busy signals from the two repeaters. 
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Chapter 4 —  Bus Interfaces 
This section summarizes the signal naming convention for the various processor island components 
that attach to the bus bridges, as well as the bus bridge interface to the external memory system for 
the following modules: 

• Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge) 

• DMP to Memory Bus System (via Bus Bridge) 

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI 
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference. 
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Instruction Cache (MWIC) to Memory Bus 
System (via Bus Bridge) 
The instruction cache (MWIC) does not connect directly to the memory bus systems. An intermediate 
bus bridge is used as shown in the following sections: 

• MWIC and Bus Bridge Block Diagram 

• MWIC to Bus Bridge Signal List 

• MWIC Bus Bridge to External Bus System Signal List 

• MWIC Unimplemented Signal List 

• Big-Endian Configuration 

• Interface Timing 

MWIC and Bus Bridge Block Diagram 
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Figure 21 Instruction Cache to IBUS 

MWIC to Bus Bridge Signal List 
The following MWIC Bus Bridge interface signals are internal to the processor island and will not 
appear on the CPU Island: 

Table 9 MWIC to IBUS Interface 

Name Direction Width Description 

mwic_rspack Input 1 Acknowledgement from the MWIC to say that it has received a 
valid 64-bit data item. Active High 

mwic_cmdval Input 1 Validates the command cell. Active High 
mwic_eop Input 1 Signifies end of packet and only asserted on the fourth and final 

command cell. Active High 
mwic_address Input 32 Physical byte address of instruction word to be fetched 
mwic_cmdack Output 1 This is the signal from the bus bridge that acknowledges the 

receipt of a valid command 
mwic_rdata Output 64 This is the returning 64-bit instruction word returning from the 

bus bridge. 
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Name Direction Width Description 

mwic_rspval Output 1 Validates ‘mwic_rdata’ 
mwic_rerror Output 1 Response error. Bus errors are transferred directly to the ARC 

700 core via the BVCI interface.  

MWIC Bus Bridge to External Bus System Signal List 
The following MWIC Bus Bridge interface signals may appear on the CPU Island: 

Table 10 Bus Bridge to External Memory System 

Name Direction Width Description 

iini_rspack Input 1 Acknowledgement from the bus bridge to say 
that it has received a valid 64-bit data item. 
Active High 

iini_cmdval Input 1 Validates the command cell. Active High 
iini_eop Input 1 Signifies end of packet and only asserted on the 

fourth and final command cell. Active High 
iini_address Input 32 Physical byte address of instruction word to be 

fetched 
iini_cmdack Output 1 This the signal from the memory bus system that 

acknowledges the receipt of a valid command 
iini_rdata Output 64 This is the 64-bit instruction word returning 

from the memory bus system 
iini_rspval Output 1 Validates ‘iini_rdata’ 
iini_rerror Output 1 Response error. Bus errors are transferred 

directly to the ARC 700 core via the BVCI 
interface.  

MWIC Unimplemented Signal List 
Both the MWIC BVCI Target interface and bus bridge omit some signals from the BVCI protocol. 
These signals are omitted because they are always constant. If required, a tie value can be used as 
show in Table 11. 

Table 11 Unimplemented BVCI Interface Signals on th e MWIC to IBUS Interface or IBUS to External 
Memory 

Name Direction Width Tied Value Description 

mwic_cmd\iini_cmd Input 2 2’b01 Command, which for this 
interface is always a read 
from the MWIC. 

mwic_contig\iini_contig Input 1 1 States that the addresses 
provided are contiguous. 
Always true from the 
MWIC. 

mwic_wrap\iini_wrap Input 1 1 States that the addresses 
provided are critical word 
first, wrap around format. 
This is always true from the 
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Name Direction Width Tied Value Description 

MWIC. 
mwic_constant\iini_constant Input 1 0 Implies a constant address. 

Never true. 
mwic_plen\iini_plen Input 6 32 Total number of bytes that 

is required. Always 32. 
mwic_be\iini_be Input 8 8’bff Byte enable signal. Always 

has value 0xFF in this case. 
mwic_reop\iini_reop Output 1 - End of Response Packet. 

Not used by MWIC. 

Big-Endian Configuration 
When the ARC 700 processor is configured as a big-endian system, the 32-bit local data is 
appropriately aligned within the 64-bit data in the system memory. 

Interface Timing 
The MWIC module only performs read accesses, with a packet size of 32 bytes (burst of four 64 bits 
cells). The interaction between the MWIC BVCI Initiator interface and the bus bridge interface is 
described, however the transactions between the bus bridge and memory bus system are identical.  
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Figure 22 MWIC Target Interface Read Access 

1. In the diagram the MWIC initiates the start of an access by asserting the command valid signal 
(mawic_cmdval = 1) and presents the first address of the wrap around style burst transfer on the 
address bus (mwic_address).  

2. This first command cell is then accepted by the IBUS target interface by asserting the command 
acknowledgement signal (mwic_cmdack = 1) either in the same clock cycle (known as default 
acknowledgement), or after one or more clock cycles later (Figure 22). 

3. With each new command acknowledgement, the MWIC initiator present the next address, 
qualifying it with the command valid signal each time. At the last address cell, the End Of Packet 
signal is asserted as well. 

4. When the data of this access is available one or more cycles after the beginning of the access, the 
IBUS module presents it on the data bus (mwic_rdata) and qualifies it with the response valid 
signal (mwic_rspval = 1). Each data cell is acknowledged by the initiator interface using the 
response acknowledgement signal (mwic_rspack). Wait cycles can be inserted between each data 
cell by de-asserting either the response valid and/or response acknowledgement signal. 
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DMP to Memory Bus System (via Bus Bridge) 
The DMP unit does not connect directly to the memory bus systems. An intermediate bus bridge is 
used as shown in the following sections: 

• DMP and Bus Bridge Block Diagram 

• DMP to Bus Bridge Signal List 

• DMP Bus Bridge to External Bus Signal List 

• DMP Unimplemented Signal List 

• Big-Endian Configuration 

• Interface Timing 

DMP and Bus Bridge Block Diagram 
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Figure 23 DMP to IBUS Interface 

DMP to Bus Bridge Signal List 
The following DMP Bus Bridge interface signals are internal to the processor island and will not 
appear on the CPU Island: 

Table 12 DMP to IBUS Interface 

Signal Direction Bus Width Description 

dbu_address Input 32 Physical byte address. It must be updated on every cycle 
during a burst. 

dbu_be Input 8 Byte Enables. They can be byte, word, long word or double 
long words sized transactions. 

dbu_cmd Input 2 Command. The types that can be issued by the DMP are: 

Read – 0x1 

Write – 0x2 

Locked Read – 0x3 
dbu_cmdval Input 1 Validates the command cell. The values on the command 

bus are valid when this signal is true. 
dbu_eop Input 1 End of Packet. This signal is asserted on the last burst cycle 

to indicate the end of that burst request. 
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Signal Direction Bus Width Description 

dbu_plen Input 6 Describes the packet length in bytes: 

Byte – 0x1 

Word (16 bits) – 0x2 

Longword (32 bits) – 0x4 

Burst of 32 bytes (4 cells packet) – 0x20 
dbu_wdata Input 64 Write Data. This is the data from a write. 
dbu_cmdack Output 1 Command Acknowledge. Acknowledges the valid command 

cell. 
dbu_rdata Output 64 Read Data. This is the returning data from a read request. 
dbu_reop Output 1 End of packet on the response bus. 
dbu_rspval Output 1 Response Valid. 
dbu_rerror Output 1 Response error. Bus errors are transferred directly to the 

ARC 700 core via the BVCI interface.  

DMP Bus Bridge to External Bus Signal List 
The following DMP Bus Bridge interface signals may appear on the CPU Island: 

Table 13 Bus Bridge to Memory Bus System 

Signal Direction Bus Width Description 

dini_address Input 32 Physical byte address. It needs to be updated on every cycle 
during a burst. 

dini_be Input 8 Byte Enables. They can be byte, word, long word or double 
long words sized transactions. 

dini_cmd Input 2 Command. The types that can be issued by the DMP are: 

Read – 0x1 

Write – 0x2 

Locked Read – 0x3 
dini_cmdval Input 1 Validates the command cell. The values on the command 

bus are valid when this signal is true. 
dini_eop Input 1 End of Packet. This signal is asserted on the last burst cycle 

to indicate the end of that burst request. 
dini_plen Input 6 Describes the packet length in bytes: 

Byte – 0x1 

Word (16 bits) – 0x2 

Longword (32 bits) – 0x4 

Burst of 32 bytes (4 cells packet) – 0x20 
dini_wdata Input 64 Write Data. This is the data from a write. 
dini_cmdack Output 1 Command Acknowledge. Acknowledges the valid 

command cell. 
dini_rdata Output 64 Read Data. This is the returning data from a read request. 
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Signal Direction Bus Width Description 

dini_reop Output 1 End of packet on the response bus. 
dini_rspval Output 1 Response Valid. 
dini_rerror Output 1 Response error. Bus errors are transferred directly to the 

ARC 700 core via the BVCI interface.  

DMP Unimplemented Signal List 
The DMP BVCI Target interface omits some signals from the BVCI protocol. If required, a tie value 
can be used as show in Table 14. 

Table 14 Unimplemented BVCI Interface Signals 

Signal Direction Bus 
Width 

Tied 
Value 

Description 

dbu_contig\dini_contig Input 1 1 Contiguous Operation. This is 
tied high. 

dbu_rspack\dini_rspack Input 1 1 Response Acknowledge. 
Indicates that the received valid 
data has been acknowledged. 
This signal is always asserted 
high. 

dbu_wrap\dini_wrap Input 1 1 Burst Wrap Around. Asserted 
on the end of cache line 
boundary to wrap around thus 
achieving critical word first 
requests. This is tied high. 

dbu_constant\dini_constant Input 1 0 Implies a constant address. 
Never true. 

Big-Endian Configuration 
When the ARC 700 processor is configured as a big-endian system, the 32-bit local data is 
appropriately aligned within the 64-bit data in the system memory. 

Interface Timing 
The DMP BVCI interface is used to perform direct load\stores and data cache refills\ data write backs 
to and from main memory. The interaction between the DMP BVCI Initiator interface and the bus 
bridge interface is described, however the transactions between the bus bridge and memory bus 
system are identical. 

The transactions can be classed into several types of operations: 

• Read Type I – A contiguous cache line fill where the requested data is in the first 64-bit cell 

• Read Type II – A cache line fill where the requested data is not in the first 64-bit cell and the 
burst request wraps around to complete the burst read. 

• Read Type III – A single byte, word, or longword access when all the ways are locked and there 
is a cache miss or an access is made to an uncached location. 

• Write Type I – A contiguous cache line writeback is performed to physical memory. 
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• Write Type II – A single byte, word, or longword writeback is performed to physical memory. 

• Locked Read – A longword, word or byte read access that locks the memory controller so that the 
next access is serviced from the DMP interface. All other interfaces are ignored until this 
happens. 

Each of the operations use standard BVCI transactions, performed using either a single cell packet 
transfer or a burst of four cell transfer.  

Single Cell Read Accesses 
The DMP uses single cell read accesses to perform read type III operations.Figure 24 shows an 
example timing diagram. 
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Figure 24 Single Cell Packet Read Access 

In the diagram the DMP initiates the start of an access by asserting the command valid signal 
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet 
(dbu_eop) and access command (dbu_cmd) of the access on the command bus.  

This first command cell is then accepted by the IBUS target interface by asserting the command 
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default 
acknowledgement), or after one or more clock cycles later.  

When the data of this access is available one or more cycles after the beginning of the access, the 
IBUS module presents it on the data bus (dbu_rdata) along with the end of packet signal (dbu_eop), 
qualified using the response valid signal (dbu_rspval = 1). 

Single Cell Write Accesses 
The DMP uses single cell write accesses to perform write type II operations. Figure 25 shows an 
example timing diagram. 
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Figure 25 Single Cell Packet Write Access on BVCI T arget Interface between DMP and IBUS 

In the diagram the DMP initiates the start of an access by asserting the command valid signal 
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet 
(dbu_eop = 1), access command (dbu_cmd) and the write data (dbu_wdata) of the access on the 
command bus.  

This first command cell is then accepted by the IBUS target interface by asserting the command 
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default 
acknowledgement), or after one or more clock cycles later.  

When the data of this access is written one or more cycles after the beginning of the access, the IBUS 
module respond by asserting the end of packet signal (dbu_eop = 1) and the response valid signal 
(dbu_rspval = 1). 

Burst of 4 Cell Read Accesses 
The DMP uses burst of four cell read accesses to perform Read Type I and Type II operations. Figure 
26 shows an example timing diagram of such an access. 
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Figure 26 Burst of 4 Cell Packet Read Access on BVC I Target Interface between DMP and IBUS 
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In the diagram the DMP initiates the start of an access by asserting the command valid signal 
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet 
(dbu_eop = 0) and access command (dbu_cmd = 1 = Read) of the access on the command bus. 

This first command cell is then accepted by the IBUS target interface by asserting the command 
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default 
acknowledgement), or after one (as in the example above) or more clock cycles later.  

With each new command acknowledgement, the DMP initiator present the next address, qualifying it 
with the command valid signal each time. The address is normally incremented by 8 bytes, however, 
when the address crosses the boundary of the packet length, the address wraps around to the first byte 
address of the packet boundary, which in the case of the example above, is address 0 in the second 
command cell. At the last address cell, the End Of Packet signal is asserted (dbu_eop = 1) as well to 
denote that the command packet is completed. 

When the data of this access is available one or more cycles after the beginning of the access, the 
IBUS module presents it on the data bus (dbu_rdata) and qualifies it with the response valid signal 
(dbu_rspval = 1). Each data cell is acknowledged by the initiator interface by default. Wait cycles 
can be inserted between each data cell by de-asserting the response valid. 

Burst of 4 Cell Write Accesses 
The DMP uses burst of four cell write accesses to perform Write Type I operations. Figure 27 shows 
an example timing diagram of such an access. In the diagram the DMP initiates the start of an access 
by asserting the command valid signal (dbu_cmdval = 1) and presents the address (dbu_address), 
packet length (dbu_plen), end of packet (dbu_eop = 0), write data (dbu_wdata) and access command 
(dbu_cmd = 2 = Write) of the access on the command bus. 

This first command cell is then accepted by the IBUS target interface by asserting the command 
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default 
acknowledgement), or after one (as in the example above) or more clock cycles later. With each new 
command acknowledgement, the DMP initiator presents the next address and data, qualifying it with 
the command valid signal each time. The address is normally incremented by 8 bytes, however, when 
the address crosses the boundary of the packet length, the address wraps around to the first byte 
address of the packet boundary, which in the case of the Figure 26, is address 0 in the second 
command cell. At the last command cell, the End Of Packet signal is asserted (dbu_eop = 1) as well 
to denote that the command packet is completed. 

When the data of this access is written one or more cycles after the beginning of the access, the IBUS 
module responds using the valid signal (dbu_rspval = 1). Each data cell is acknowledged by the 
initiator interface by default. Wait cycles can be inserted between each response cell by de-asserting 
the response valid signal. 
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Figure 27 Burst of 4 Cell Packet Write Access on BV CI Target Interface between DMP and IBUS 

Single Cell locked Read Accesses 
The DMP uses single cell locked read accesses to perform Locked Read operations. Figure 28 shows 
an example timing diagram of such an access. 
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Figure 28 Locked Read Access followed by Single Wri te Access on BVCI Target Interface between DMP 
and IBUS 

1. The first read access proceeds in a very similar way to a single read access except that the 
command is a Locked Read (dbu_cmd = 0x3).  

2. Once the command cell is acknowledged in the third clock cycle, the external arbiter design 
must lock the bus to the same initiator (DMP-bus bridge), giving it default grant until it 
receives a single or burst write access from the same DMP-bus bridge initiator interface. 
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Chapter 5 —  Closely Coupled Memories (CCM) 
The following subsections cover the direct memory interfaces that are available on the Instruction 
Closely Coupled Memory (ICCM) and the Data Closely Coupled Memory (DCCM): 

• Closely Coupled Memories 

• CCM DMI Interfaces 

Closely Coupled Memories 
CCMs are used to complement or replace traditional instruction and data cache memories. Unlike 
standard cache architectures, CCMs are passive memories that attach to the instruction and data fetch 
interfaces of the processor, and provide fast data and program code access. It is the responsibility of 
the programmer to ensure that valid program data exists in the ICCM and valid data in the DCCM.  
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Figure 29 ICCM and DCCM Configuration Example 

CCM DMI Interfaces 
The ICCM and DCCM memories support a direct memory interface into the RAMs (DMI). The 
purpose of the DMI is to allow an external client, such as a DMA engine, to initialize the contents of 
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the RAMs prior to processor execution. It is also possible to modify the contents of the RAMs whilst 
the CPU is in a ‘run’ state, however data coherency issues must be considered. 

CCM DMI Signal List 
The following CCM DMI BVCI interface signals may appear on the CPU Island. 

Table 15 DCCM Direct Memory Interface (DMI) 

ICCM Signals DCCM Signals Direction Bus 
Width 

Description  

iccm_dmi_address dccm_address Input 32 Byte Address. The ccm_address is 
updated on every cycle during a 
burst. 

iccm_dmi_be dccm_be Input 4 Byte Enables. The requests to this 
interface can be of the size byte, 
word or longword (32-bit), 
therefore this signal should be set 
depending upon the size of the 
requested cell. 

iccm_dmi_cmd dccm_cmd Input 2 Command. The type of command to 
be performed is specified by this 
bus: 

Read – 0x1 

Write – 0x2 

This bus is qualified with 
dccm_cmdval. 

iccm_dmi_cmdval dccm_cmdval Input 1 Command is Valid. The values on 
ccm_cmd, ccm_address, are valid 
when this signal is true. 

iccm_dmi_contig dccm_contig Input 1 Unused  
iccm_dmi_eop dccm_eop Input 1 End of Packet. The signal 

dccm_eop is asserted on the last 
burst cycle to indicate the end of 
that burst request. 

iccm_dmi_plen dccm_plen Input 6 Unused 
iccm_dmi_rspack dccm_rspack Input 

 

1 Response Acknowledge. This 
signal tells the CCM that the 
received valid data has been 
acknowledged.  

iccm_dmi_wdata dccm_wdata Input 32 Write Data. This is the data from a 
write request (dccm_cmd = 0x2) 
and is qualified when dccm_cmdval 
is true. 

iccm_dmi_wrap dccm_wrap Input 1 Unused 
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ICCM Signals DCCM Signals Direction Bus 
Width 

Description  

iccm_dmi_cmdack dccm_cmdack Output 1 Command Acknowledge. This 
signal acknowledges every cell 
during an operation. 

iccm_dmi_rdata dccm_rdata Output 32 Read Data. This is the returning 
data from a read request 
(dccm_cmd = “01”) and is qualified 
when dccm_rspval is true. 

iccm_dmi_reop dccm_reop Output 1 End of packet. 
iccm_dmi_rerror dccm_rerror Output 1 Unused 
iccm_dmi_rspval dccm_rspval Output 1 Response Valid. The dccm_rspval 

acknowledges both read and write 
data. 

Interface Reset State 
Upon a global reset all signals on this interface are set to zero. This is also expected to be the state of 
the interface at time zero for simulation purposes. 

CCM DMI Behavior 
The CCM DMI interfaces supports all the command modes provided by the BVCI protocol (Refer to 
the Virtual Component Interface Standard), and the capabilities of both the ICCM and DCCM are 
identical. 

The CCM’s support the following types of operation: 

• Read Type I – A burst read operation 

• Read Type II – A single cell read operation of a byte, word, or longword (32-bits) size 

• Write Type I – A burst write operation 

• Write Type II – A single cell write operation of a byte, word, or longword (32-bits) size 

Read Type I Timing Behavior 
The memory requesting device issues a read burst requests to the CCM controller. A cycle-by-cycle 
description: 

1. Time = 10ns. The address is set up via ccm_address = ADDR0 when a read (ccm_cmd = 0x1) 
is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 32 
bytes, i.e. ccm_plen = 0x20. The write data (ccm_wdata) is ignored. Also ccm_contig and 
ccm_wrap are ignored, because the CCM control module does not service the request 
differently if any of these are set. All bytes are returned during read operations, so ccm_be is 
actually ignored by the CCM. 

2. Time = 20ns. The CCM control module acknowledges the read request (ccm_cmdack = ‘1’). 
The address, access type, and qualifier signals are maintained, i.e. ccm_address = ADDR0, 
ccm_cmd = 0x1 and ccm_cmdval = ‘1’ respectively.  

3. Time = 30ns. Data (ccm_rdata = DATA0) is returned to the memory requesting device and 
it is valid (ccm_rspval = ‘1’). The memory requesting device has the response 
acknowledgement default set in this example (ccm_rspack = ‘1’), which means that the 
device immediately acknowledges the returning data. Also, the address is set up for the next 
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access via ccm_address = ADDR1 for the read (ccm_cmd = 0x1) is performed. This access is 
valid (ccm_cmdval = ‘1’). This is a contiguous access (ccm_contig = ‘1’) and all bytes are to 
be written back to the CCM (ccm_be = 0xFF). The write data (ccm_wdata) is ignored. The 
CCM control module acknowledges the read request (ccm_cmdack = ‘1’) made on this cycle. 

4. Time = 40ns. Data (ccm_rdata = DATA1) is returned to the CCM control module and it is 
valid (ccm_rspval = ‘1’). The memory requesting device also acknowledges receipt of the 
received data (ccm_rspack = ‘1’). The address is set up for the next access (ccm_address = 
ADDR2) in the burst sequence. The CCM control module acknowledges the read request 
(ccm_cmdack = ‘1’) made on this cycle. 

5. Time = 50ns. Data (ccm_rdata = DATA2) is returned to the CCM control module and it is 
valid (ccm_rspval = ‘1’). The requesting device also acknowledges receipt of the received 
data (ccm_rspack = ‘1’). The address is set up for the next access (ccm_address = ADDR3) 
in the burst sequence. This is the last request in the burst sequence, which is indicated by the 
end of packet being set (ccm_eop = ‘1’).  

6. Time = 60ns. Data (ccm_rdata = DATA3) is returned to the CCM control module and it is 
valid (ccm_rspval = ‘1’). The CCM control module confirms that this data is last in the burst 
(ccm_reop = ‘1’) and the requesting device acknowledges receipt of the received data 
(ccm_rspack = ‘1’). The requesting device has no more valid requests to make to the CCM 
(ccm_cmdval = ‘0’).  

7. Time = 70ns. There are no further requests by the requesting device (ccm_cmdval = ‘0’). 
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Figure 30 Read Burst on the CCM Burst Interface 

Read Type II Timing Behavior 
The memory requesting device issues a single cell read request to the CCM. A cycle-by-cycle 
description: 
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1. Time = 10ns. The address is set up via ccm_address = ADDR. A read (ccm_cmd = 0x1) is 
performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 4 
bytes, i.e. ccm_plen= 0x04. The minimum amount of data that can be read on a BVCI 
interface is a cell, which in this case is 4 bytes (32-bits). All 4 bytes will be sent back, 
because during read operations the level of granularity is one cell. It is up to the memory 
requestor to extract the relevant bytes, when it receives the requested cells. As it is a read 
operation both the write data (ccm_wdata) and the byte enables (ccm_be) are ignored. 

2. Time = 20ns. The CCM acknowledges the read request (ccm_cmdack = ‘1’). The address, 
access type, and qualifier signals are maintained, i.e. ccm_address = ADDR, ccm_cmd = 0x1 
and ccm_cmdval = ‘1’ respectively.  

3. Time = 30ns. There are no further requests by the CCM control (ccm_cmdval = ‘0’). Data 
(ccm_rdata = DATA) is returned to the CCM control module and it is valid (ccm_rspval = 
‘1’). The memory requestor also acknowledges receipt of the received data (ccm_rspack = 
‘1’). The write data (ccm_wdata) is ignored. There are no further requests by the memory 
requestor (dccm_cmdval = ‘0’). 
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Figure 31 Single Cell Read Operation on the CCM DMI  

Write Type I Timing Behavior 
The memory requestor issues a burst write request to the CCM. A cycle-by-cycle description: 

1. Time = 10ns. The address is set up via ccm_address = ADDR0 when a write (ccm_cmd = 
0x2) is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length 
of 32 bytes, i.e. ccm_plen = 0x20. This is a contiguous access (ccm_contig = ‘1’) and all 
bytes are to be written to the CCM (ccm_be = 0xFF). The write data (ccm_wdata = DATA0) 
is valid. 



CCM DMI Interfaces Closely Coupled Memories (CCM) 

54     ARC® 700 External Interfaces Reference 

2. Time = 20ns. The CCM acknowledges the write request (ccm_cmdack = ‘1’). The address, 
data, access type, and qualifier signals are maintained, i.e. ccm_address = ADDR0, 
ccm_wdata = DATA0, ccm_cmd = 0x2 and ccm_cmdval = ‘1’ respectively.  

3. Time = 30ns. The write operation has completed successfully (ccm_rspval = ‘1’). The 
memory requestor acknowledges receipt of the written data (ccm_rspack = ‘1’). The address 
is set up for the next access via ccm_address = ADDR1 and write data ccm_wdata = 
DATA1. The next access is immediately acknowledged (ccm_cmdack = ‘1’). 

4. Time = 40ns. The write operation has completed successfully (ccm_rspval = ‘1’). The 
memory arbitrator acknowledges receipt of the written data (ccm_rspack = ‘1’). The address 
is set up for the next access via ccm_address = ADDR2 and write data ccm_wdata = 
DATA2. The next access is immediately acknowledged (ccm_cmdack = ‘1’). 

5. Time = 50ns. The write operation has completed successfully (ccm_rspval = ‘1’). The 
memory requestor acknowledges receipt of the written data (ccm_rspack = ‘1’). The address 
is set up for the next access via ccm_address = ADDR3 and write data ccm_wdata = 
DATA3. This is the last request in the burst (ccm_eop = ‘1’). The last access is immediately 
acknowledged (ccm_cmdack = ‘1’).  

6. Time = 60ns. The write operation has completed successfully (ccm_rspval = ‘1’). The CCM 
control module confirms that this data is last in the burst (ccm_reop = ‘1’) and the memory 
requestor acknowledges receipt of the received data (ccm_rspack = ‘1’). The CCM control 
module has no more valid requests to make to the CCM (ccm_cmdval = ‘0’). The address, 
write data and access type can be ignored. 

7. Time = 70ns. There are no further requests by the memory requestor (ccm_cmdval = ‘0’). 
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Figure 32 Write Burst Operation to the CCM DMI 

Write Type II Timing Behavior 
The memory requestor issues a single cell write request to the CCM. A cycle-by-cycle description: 
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1. Time = 10ns. The address is set up via ccm_address = ADDR when a write (ccm_cmd = 0x2) 
is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 4 
bytes, i.e. ccm_plen = 0x4. The lower 4 bytes are to be written to the CCM (ccm_be = 0x0F). 
The write data (ccm_wdata = DATA) is valid. 

2. Time = 20ns. The CCM control module acknowledges the write request (ccm_cmdack = ‘1’). 
The address, data, access type, and qualifier signals are maintained, i.e. ccm_address = 
ADDR, ccm_wdata = DATA, ccm_cmd = 0x2 and ccm_cmdval = ‘1’ respectively.  

3. Time = 30ns. The write operation has completed successfully (ccm_rspval = ‘1’). The CCM 
control module confirms that this data is last in the burst (ccm_reop = ‘1’) and the memory 
requestor acknowledges receipt of the received data (ccm_rspack = ‘1’). There are no further 
requests by the memory requestor (ccm_cmdval = ‘0’).  

4. Time = 40ns. The memory requestor has no more valid requests to make to the CCM 
(ccm_cmdval = ‘0’). The address, write data and access type can be ignored. 

 0ns 10ns 20ns 30ns 40ns 50ns 

clk 

ccm_address[31:0] 

ccm_be[3:0] 

ccm_cmd[1:0] 

ccm_cmdval 

ccm_contig 

ccm_eop 

ccm_plen[5:0] 

ccm_rspack 

ccm_wdata[31:0] 

ccm_wrap 

ccm_cmdack 

ccm_rdata[31:0] 

ccm_reop 

ccm_rspval 

ADDR 

0F 

2 

04 

DATA 

 
Figure 33 Single Cell Write Operation on the CCM DM I 
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Chapter 6 —  XY Memory 
The following subsections cover the direct memory interfaces that are available on the XY Memory 
Module: 

• XY Memory  

• XY DMI interface 
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XY Memory 
The XY Memory module is an optional DSP extension to the ARC 700 processor core. This 
extension provides a high data throughput closely coupled memory, accessible via pointer, that can be 
automatically updated. The XY memory extension contains two memory regions of equal size, each 
configurable at build time from 4K up to 32K each. Also configurable at build time is a direct 
memory interface (DMI). The DMI enables an external client, such as a DMA engine, to perform the 
following: 

• Initialize the contents of the RAMs prior to processor execution.  

• Modify or upload the contents of the RAMs whilst the CPU is running. 

• Read or offload the contents of the RAMs whilst the CPU is running. 

Since no coherence protection is provided with the XY memory DMI port, the user has to be aware 
that other software or hardware mechanisms may be required to deal with data coherency.  

For more details on the XY memory module, please refer to the ARC 700 DSP Options Reference. 

XY DMI interface 
The XY DMI interface is an optional DMI interface. The XY DMI Signal List section lists the signals 
on the DMI interface. 

XY DMI Signal List 
The following XY DMI BVCI interface signals may appear on the CPU Island: 

Table 16 XY DMI Interface Signals 

Signals Direction Bus 
Width 

Description  

xydmi_address Input N Byte Address. It is updated on every cycle during a burst. N 
varies with the size of each memory region: 

• 4k per region, N = 13 
• 8k per region, N = 14 
• 16k per region, N = 15 
• 32k per region, N = 16 

xydmi_be Input 8 Byte Enables. The requests to this interface can be of the size 
byte, word , longword (32-bit) or double longword (64bits). 
Therefore this signal should be set depending upon the size of 
the requested cell. 

xydmi_cmd Input 2 Command. The type of command to be performed is specified 
by this bus: 

Read – 0x1 
Write – 0x2 
This bus is qualified with xydmi_cmdval. 
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Signals Direction Bus 
Width 

Description  

xydmi_cmdval Input 1 Command is Valid. The values on xydmi_cmd, 
xydmi_address, xydmi_be and xydmi_eop  are valid when this 
signal is true. 

xydmi_eop Input 1 End of Packet. The signal dccm_eop is asserted on the last 
burst cycle to indicate the end of that burst request. 

xydmi_rspack Input 

 

1 Response Acknowledge. This signal tells the XY memory 
module that the received valid data has been acknowledged.  

xydmi_wdata Input 64 Write Data. This is the data from a write request (xydmi_cmd 
= 0x2) and is qualified when xydmi_cmdval is true. 

xydmi_cmdack Output 1 Command Acknowledge. This signal acknowledges every cell 
during an operation. 

xydmi_rdata Output 64 Read Data. This is the returning data from a read request 
(xydmi_cmd = “01”) and is qualified when xydmi_rspval is 
true. 

xydmi_reop Output 1 End of packet. 
xydmi_rspval Output 1 Response Valid. The xydmi_rspval acknowledges both read 

and write data. 

The X and the Y memory regions are mapped onto the address space with the X region occupying the 
lower half of the memory area and Y region occupying the upper half. 

Interface Reset State 
Upon a global reset all signals on this interface are set to zero. This is also expected to be the state of 
the interface at time zero for simulation purposes. 

XY DMI Behavior 
The XY DMI interfaces supports all the command modes provided by the BVCI protocol (Refer to 
the Virtual Component Interface Standard). The following types of operation are supported: 

• Read Type I – A burst read operation 

• Read Type II – A single cell read operation of a byte, word, longword (32 bits) or double 
longword (64 bits) size. 

• Write Type I – A burst write operation 

• Write Type II – A single cell write operation of a byte, word, longword (32bits) or double 
longword (64 bits) size. 

Read Type I Timing Behavior 
The memory requesting device issues a read burst request to the XY memory DMI. A cycle-by-cycle 
description of an example follows: 

• Time = 10ns. The burst access starts, with the address, byte enable, and read command placed on 
the bus on xydmi_address, xydmi_be and xydmi_cmd respectively with xydmi_cmdval set to 
high. The write data (xydmi_wdata) is ignored. 

• Time = 20ns. The XY DMI default acknowledges the read request (xydmi_cmdack = ‘1’) and sets 
the command acknowledge signal to low so that the next cell in the packet is not acknowledged 
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immediately. With the cell acknowledged, the address (xydmi_address) is incremented for the 
next cell transfer.  

• Time = 30ns. The request made to XY memory by the XY DMI is granted in this cycle. Wait 
cycle on the BVCI command bus 

• Time = 40ns. The data from XY memory is returned for the request made by XY DMI and is 
registered and presented onto the read data bus (xydmi_rdata), with the valid signal 
(xydmi_rspval) set to high. 

• Time = 50ns. The response is acknowledged by xydmi_rspack being high. This sets the 
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command 
cell, and the response valid (xydmi_rspval) signal to go low. 

• Time = 60ns to 130ns, repeats the same process between 10ns to 50ns, but for the second and 
third command cell. 

• Time = 140ns, The last command cell is acknowledged, which has xydmi_eop set to high, and set 
the command acknowledge signal to low. 

• Time = 160ns. Read data becomes available on the response bus. 

• Time = 170ns. Since xydmi_rspack is low, the response cell has not been acknowledged and the 
XY DMI interface keeps the response cell for another cycle on bus.  

• Time = 180ns. With xydmi_rspack at high, the response cell has been acknowledged. This 
completes the burst (packet) transfer.  
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Figure 34 Read Burst Access on XY Memory DMI. 

Read Type II Timing Behavior 
The memory requesting device issues a single read request to the XY memory DMI. A cycle-by-cycle 
description of an example follows: 

• Time = 10ns. The access starts, with the address, byte enable, and read command placed on the 
bus on xydmi_address, xydmi_be and xydmi_cmd respectively with xydmi_cmdval set to high. 
The end of packet signal (xydmi_eop) is also set to high to indicate that it is a single access. The 
write data (xydmi_wdata) is ignored. 

• Time = 20ns. The XY DMI default acknowledges the read request (xydmi_cmdack = ‘1’) and sets 
the command acknowledge signal to low so that the next command cell is not acknowledged 
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immediately. With the cell acknowledged, the command valid signal (xydmi_cmdval) is de-
asserted. 

• Time = 30ns. The request made to XY memory by the XY DMI is granted in this cycle. Wait 
cycle on the BVCI command bus 

• Time = 40ns. The data from XY memory is returned for the request made by XY DMI and is 
registered and presented onto the read data bus (xydmi_rdata), with the valid signal 
(xydmi_rspval) set to high. 

• Time = 50ns. The response is acknowledged by xydmi_rspack being high. This sets the 
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command 
cell, and the response valid (xydmi_rspval) signal to goes low. 
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Figure 35 Single Read Access on XY Memory DMI.  

Write Type I Timing Behavior 
The memory requesting device issues a write burst request to the XY memory DMI. A cycle-by-cycle 
description of an example follows: 

• Time = 10ns. The burst access starts, with the address, byte enable, write data and write 
command placed on the bus on xydmi_address, xydmi_be, xydmi_wdata and xydmi_cmd 
respectively with xydmi_cmdval set to high. 

• Time = 20ns. The XY DMI default acknowledges the write request (xydmi_cmdack = ‘1’) and 
sets the command acknowledge signal to low so that the next cell in the packet is not 
acknowledged immediately. With the cell acknowledged, the address (xydmi_address) is 
incremented for the next cell transfer.  

• Time = 30ns. The XY DMI made a request to XY memory and is granted in this cycle. Hence 
XY DMI sets the response valid signal (xydmi_rspval) to high 

• Time = 40ns. The response is acknowledged by xydmi_rspack being high. This sets the 
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command 
cell, and the response valid (xydmi_rspval) signal to go low. 

• Time = 50ns to 100ns, repeats the same process between 10ns to 50ns, but for the second and 
third command cell. 
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• Time = 110ns, The last command cell is acknowledged, which has xydmi_eop set to high, and set 
the command acknowledge signal to low. 

• Time = 120ns. Response valid (xydmi_rspval) go high. 

• Time = 130ns. Since xydmi_rspack is low, the response cell has not been acknowledged and the 
XY DMI interface keeps the response cell for another cycle on bus.  

• Time = 140ns. With xydmi_rspack at high, the response cell has been acknowledged. This 
completes the burst (packet) transfer. 
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Figure 36 Burst Write Access on XY DMI 

Write Type II Timing Behavior 
The memory requesting device issues a single burst write requests to the XY memory DMI. A cycle-
by-cycle description of an example follows: 

• Time = 10ns. The access starts, with the address, byte enable, write data and write command 
placed on the bus on xydmi_address, xydmi_be, xydmi_wdata and xydmi_cmd respectively with 
xydmi_cmdval set to high. The end of packet signal (xydmi_eop) is also set to high to indicate 
that it is a single access. 

• Time = 20ns. The XY DMI default acknowledges the write request (xydmi_cmdack = ‘1’) and set 
the command acknowledge signal to low so that the next cell in the packet is not acknowledged 
immediately.  With the cell acknowledged, the command valid signal (xydmi_cmdval) is de-
asserted. 

• Time = 30ns. The XY DMI made a request to XY memory and is granted in this cycle. And 
hence XY DMI sets the response valid signal (xydmi_rspval) to high. 

• Time = 40ns. The response is acknowledged by xydmi_rspack being high. This sets the 
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command 
cell, and the response valid (xydmi_rspval) signal to goes low. 
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Figure 37 Single Write Access on XY DMI
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Chapter 7 —  Processor Signals 
The processor signals are used to run, clock and interrupt the processor core. 

The processor signals are covered in the following subsections: 

• Processor Control Interface 

• Interrupt Unit 

• Test 

Processor Control Interface 
The processor interface signals are used to run and clock the processor core. The following sections 
cover the processor control interface in more detail: 

• Processor Signal List 

• Clocks 

• Reset 

• Start 

• Run 

Processor Signal List 
The following processor control interface signals may appear on the CPU Island: 

Table 17 Processor Control Signal List 

Signal Direction Description 

clk_cpu Input Processor Core Clock. 
clk_sys Input External Memory System Clock. 
rst_a Input Reset - Asynchronous, and active high. 
ctrl_cpu_start_r Input Start - Depends on configuration. 
ctrl_arch_status32_h_r Output Run - Set high when processor is halted. 

 

Clocks 
The ARC 700 processor is a fully static design, and uses two positive edge clocks clk_cpu and 
clk_sys.  

clk_cpu is the ARC 700 processor core clock. clk_sys is the external memory system clock. 

These clock nets are not buffered in the design, since it is intended that clock tree synthesis technique 
will be used. 
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The supported clock frequency ratios are dependent on the particular CPU Island interfaces in the 
design. For example see the BVCI Bus Bridge Clock Synchronization Unit.  

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI 
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference. 

Reset 
The reset net rst_a is asynchronous, and active high. ARC International recommends that the reset 
signal be arranged to be asynchronously applied and synchronously removed. Reset should be applied 
for a minimum of four clock cycles. The synthesis tool should be allowed to buffer the rst_a net. 

Start 
The start signal, ctrl_cpu_start_r, is used to start the processor with particular configurations that 
are set to halt-on-reset. 

Run 
The run signal, ctrl_arch_status32_h_r is an output signal that is set high when processor is 
halted. 

Interrupt Unit 
The ARC 700 system features a configurable interrupt unit that allows selection of 8, 16, or 32 
interrupt inputs. The interrupt unit generates interrupt requests (IRQs) to the CPU and has the ability 
to bring the CPU out of sleep mode when a valid interrupt request is present. 

All interrupts can either be pulse or level triggered as well as having individual mask bits and priority 
levels. 

The number of user interrupts lines is dependant upon the number of interrupts that are configured in 
ARChitect configuration tool. 

 

Interrupt 
Unit 

ARC 700 
Processor

irq[5-31]_n_a 

 
Figure 38 Interrupt Interface 

The following sections cover the interrupt interface in more detail: 

• Feature List 

• Interrupt Signal List 

• Incoming Request Interface Timing 
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Feature List 
• Maximum of 26 user-definable IRQs (5 to 31) 

• Programmable interrupt type on all IRQs (pulse, level) 

• The lowest interrupt number has the highest interrupt priority 

• Programmable mask bit on all IRQs 

• Programmable priority level (level 1 = low, level 2 = high ) on all IRQs 

• Software controlled triggers for all IRQs  

Interrupt Signal List 
The following interrupt interface signals may appear on the CPU Island: 

Table 18 Configurable Interrupt Lines 

Signal Name Total Number of User 
Interrupt Lines 

ARChitect 
Selection 

Direction Purpose 

irq[5:7]_n_a 3 8 Interrupts In Interrupt Request signal 

irq[8:15]_n_a 11 16 Interrupts In Interrupt Request signal 

irq[16:31]_n_a 27 32 Interrupts In Interrupt Request signal 

The irqxx_n_a signal can be level or pulse type and is asynchronously applied. If pulse type 
interrupts are used, then the minimum width of the signal should be twice that of the interrupt unit 
clock. When the irqxx_n_a signal is asserted (all interrupts are active low) it raises an interrupt 
request to the interrupt unit. The interrupt unit will then decide if the signal is legal based on the 
enable and mask bits. If the interrupt signal type is level, then it is up to the signal source to remove it 
once the interrupt has been accepted by the CPU (this should be done by the interrupt service 
routine). If the interrupt type is pulse, then the interrupt unit will register the signal and it is up to the 
interrupt service routine to clear the interrupt by using the AUX_IRQ_PULSE_CANCEL register. 

Incoming Request Interface Timing 
Figure 39 shows a level type interrupt request. At time 10ns irqx_n_a is asserted (goes low). 
Interrupt X is a level type interrupt, therefore it remains asserted until the issuing device removes it. 
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clk 

irqx_n_
a 

 
Figure 39 Example Level Type Interrupt 

Figure 40 shows a pulse type interrupt request. At time 10ns irqx_n_a is asserted for a minimum 
period of x2 the clock period. irqx is a pulse type interrupt, therefore the processor registers the 
interrupt request, and once serviced, it is the responsibility of the interrupt service routine to clear the 
interrupt within the interrupt unit (using AUX_IRQ_PULSE_CANCEL). 
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Figure 40 Example Pulse Type Interrupt  

Test 
The input signal xtest_mode_atpg sets the processor in a mode which is optimized for good fault 
coverage. Only present if the configuration requires some modification in test mode. Not all 
configurations have this signal. 

The input signal xtest_mode_rambist allows the built in self test (BIST) control unit, provided by 
customers, to gain access to the RAMs. Only present if the ARChitect option -bist_muxes has been 
selected. 

The test interface signals are summarized in Table 19. 

Test Signal List 
The following test interface signals may appear on the CPU Island: 

Table 19 Test Signal List 

Signal Direction Description 

xtest_mode_atpg Input ATPG Test Mode. 
xtest_mode_rambist Input RAM BIST Test Mode. 
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