
ARC® 700 IP Library

ARC® 700 External Interfaces

Reference

5117-014

ARC® 700 External Interfaces Reference

ARC® International
European Headquarters
ARC International,
Verulam Point,
Station Way,
St Albans, Herts, AL1 5HE, UK
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

North American Headquarters
3590 N. First Street, Suite 200
San Jose, CA 95134 USA
Tel. +1 408.437.3400
Fax +1 408.437.3401

www.arc.com

ARC Confidential Information
© 2003-2008 ARC International (Unpublished). All rights reserved.

Notice
This document, material and/or software contains confidential and proprietary information of ARC International and is protected by
copyright, trade secret, and other state, federal, and international laws, and may be embodied in patents issued or pending. Its receipt or
possession does not convey any rights to use, reproduce, disclose its contents, or to manufacture, or sell anything it may describe. Reverse
engineering is prohibited, and reproduction, disclosure, or use without specific written authorization of ARC International is strictly
forbidden. ARC and the ARC logotype are trademarks of ARC International.

The product described in this manual is licensed, not sold, and may be used only in accordance with the terms of a License Agreement
applicable to it. Use without a License Agreement, in violation of the License Agreement, or without paying the license fee is unlawful.

Every effort is made to make this manual as accurate as possible. However, ARC International shall have no liability or responsibility to
any person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by this manual,
including but not limited to any interruption of service, loss of business or anticipated profits, and all direct, indirect, and consequential
damages resulting from the use of this manual. ARC International's entire warranty and liability in respect of use of the product are set forth
in the License Agreement.

ARC International reserves the right to change the specifications and characteristics of the product described in this manual, from time to
time, without notice to users. For current information on changes to the product, users should read the "readme" and/or "release notes" that
are contained in the distribution media. Use of the product is subject to the warranty provisions contained in the License Agreement.

Licensee acknowledges that ARC International is the owner of all Intellectual Property rights in such documents and will ensure that an
appropriate notice to that effect appears on all documents used by Licensee incorporating all or portions of this Documentation.

The manual may only be disclosed by Licensee as set forth below.

• Manuals marked "ARC Confidential & Proprietary" may be provided to Licensee's subcontractors under NDA. The manual may not
be provided to any other third parties, including manufacturers. Examples--source code software, programmer guide, documentation.

• Manuals marked "ARC Confidential" may be provided to subcontractors or manufacturers for use in Licensed Products. Examples--
product presentations, masks, non-RTL or non-source format.

• Manuals marked "Publicly Available" may be incorporated into Licensee's documentation with appropriate ARC permission.
Examples--presentations and documentation that do not embody confidential or proprietary information.

The ARCompact instruction set architecture processor and the ARChitect configuration tool are covered by one or more of the following
U.S. and international patents: U.S. Patent Nos. 6,178,547, 6,560,754, 6,718,504 and 6,848,074; Taiwan Patent Nos. 155749, 169646, and
176853; and Chinese Patent Nos. ZL 00808459.9 and 00808460.2. U.S., and international patents pending.

U.S. Government Restricted Rights Legend
Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor clauses in
the FAR, or the DOD or NASA FAR Supplement.

CONTRACTOR/MANUFACTURER IS ARC International I. P., Inc., 3590 N. First Street, Suite 200, San Jose, CA 95134.

Trademark Acknowledgments
ARCangel, ARChitect, ARCompact, ARCtangent, High C/C++, High C++, the MQX Embedded logo, RTCS, and VRaptor, are trademarks
of ARC International. ARC, the ARC logo, High C, MetaWare, MQX, MQX Embedded and VTOC are registered under ARC International.
All other trademarks are the property of their respective owners.

5117-014 April-2008

http://www.arc.com/

ARC® 700 External Interfaces Reference iii

Contents

Chapter 1 — Introduction 9
Overview of Interfaces 10
Block Diagram 11
Signal Lists 11

Chapter 2 — JTAG (Joint Test Action Group)
Communication Module 13

JTAG Interface 14
JTAG Signal List 15

JTAG Pin Connector 15

JTAG Programmer’s Model 16
The Instruction Register 17

The JTAG Status Register (Instruction Code 0x8) 18

The Transaction Command Register (Instruction Code 0x9) 18

The Address Register (Instruction Code 0xA) 19

The Data Register (Instruction Code 0xB) 19

The IDCODE register (instruction code 0xC) 19

The Bypass Register (Instruction Code 0xF) 20

The Boundary Scan Register (Instruction Code 0x0 and 0x1) 20

JTAG Port 21
The TAP Controller 21

The TAP Controller State Machine 22

The Debug Port 24

The Host Interface to BVCI Target 24

Setting Up Read/Write Transactions 25
Setting up a Write Access to the ARC 700 Processor or Memory 25

Accessing the Status Register 26

Setting up a Read Access from the ARC 700 Processor or Memory 27

JTAG Port Reset 27
PC - JTAG Communications 28

Chapter 3 — Bus Bridge 30
Bus Bridge Block Diagram 31
BVCI Protocol 31

BVCI Signal List 32

Bus Bridge Block Diagram 33
Clock Synchronization Unit 33

List of Tables

iv ARC® 700 External Interfaces Reference

Toggle Unit 34

Edge Detection 34

Phase Detection 34

Mask Generator 35

Last Phase Detect 35

Clock Crossing BVCI Bridge 37

Chapter 4 — Bus Interfaces 38
Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge) 39

MWIC and Bus Bridge Block Diagram 39

MWIC to Bus Bridge Signal List 39

MWIC Bus Bridge to External Bus System Signal List 40

MWIC Unimplemented Signal List 40

Big-Endian Configuration 41

Interface Timing 41

DMP to Memory Bus System (via Bus Bridge) 42
DMP and Bus Bridge Block Diagram 42

DMP to Bus Bridge Signal List 42

DMP Bus Bridge to External Bus Signal List 43

DMP Unimplemented Signal List 44

Big-Endian Configuration 44

Interface Timing 44

Chapter 5 — Closely Coupled Memories (CCM) 49
Closely Coupled Memories 49
CCM DMI Interfaces 49

CCM DMI Signal List 50

Interface Reset State 51

CCM DMI Behavior 51

Chapter 6 — XY Memory 56
XY Memory 57
XY DMI interface 57

XY DMI Signal List 57

Interface Reset State 58

XY DMI Behavior 58

Chapter 7 — Processor Signals 63
Processor Control Interface 63

Processor Signal List 63

Clocks 63

Reset 64

Start 64

Run 64

Interrupt Unit 64

Overview of Interfaces

ARC® 700 External Interfaces Reference v

Feature List 65

Interrupt Signal List 65

Incoming Request Interface Timing 65

Test 66
Test Signal List 66

ARC® 700 External Interfaces Reference vi

List of Figures

Figure 1 Example External Bus System Architecture ..11

Figure 2 The JTAG Communications Module..15

Figure 3 Recommended JTAG Pin Connector, Top View..16

Figure 4 Data Registers Access via the Instruction Register ...17

Figure 5 A JTAG Port with an ARC 700 Processor ...21

Figure 6 Internal Structure of the JTAG Port ...22

Figure 7 TAP Controller State Diagram...22

Figure 8 Loading Data into the Shift Register..24

Figure 9 Internal Structure of the Host Interface to BVCI Target Module25

Figure 10 Loading the Instruction Register..26

Figure 11 Loading the Data Register...26

Figure 12 Loading the Instruction Register (Select Address Register).................................27

Figure 13 Example of a Typical ARC 700 System...31

Figure 14 Bus Bridge Structure (IBUS) ...33

Figure 15 Design of the CKSYN..34

Figure 16 CKSYN Timing Diagram at 4:1 Clock Ratio...35

Figure 17 CKSYN Timing Diagram at 3:1 Clock Ratio...35

Figure 18 CKSYN Timing Diagram at 2:1 Clock Ratio...36

Figure 19 CKSYN Timing Diagram at 1:1 Clock Ratio...36

Figure 20 Design of the CBRI - Resets Not Shown ...37

Figure 21 Instruction Cache to IBUS...39

Figure 22 MWIC Target Interface Read Access ..41

Figure 23 DMP to IBUS Interface..42

Figure 24 Single Cell Packet Read Access ...45

Figure 25 Single Cell Packet Write Access on BVCI Target Interface between DMP and
IBUS ..46

Figure 26 Burst of 4 Cell Packet Read Access on BVCI Target Interface between DMP and
IBUS ..46

Figure 27 Burst of 4 Cell Packet Write Access on BVCI Target Interface between DMP and
IBUS ..48

Overview of Interfaces

ARC® 700 External Interfaces Reference vii

Figure 28 Locked Read Access followed by Single Write Access on BVCI Target Interface
between DMP and IBUS ..48

Figure 29 ICCM and DCCM Configuration Example..49

Figure 30 Read Burst on the CCM Burst Interface ..52

Figure 31 Single Cell Read Operation on the CCM DMI..53

Figure 32 Write Burst Operation to the CCM DMI..54

Figure 33 Single Cell Write Operation on the CCM DMI ..55

Figure 34 Read Burst Access on XY Memory DMI. ...59

Figure 35 Single Read Access on XY Memory DMI...60

Figure 36 Burst Write Access on XY DMI ..61

Figure 37 Single Write Access on XY DMI ..62

Figure 38 Interrupt Interface..64

Figure 39 Example Level Type Interrupt..65

Figure 40 Example Pulse Type Interrupt ...66

ARC® 700 External Interfaces Reference viii

List of Tables

Table 1 JTAG Signal List 15

Table 2 JTAG Pin Connector Descriptions 16

Table 3 JTAG Registers 16

Table 4 JTAG Read/Write Transactions 18

Table 5 Instructions that Employ the Boundary Scan Register 20

Table 6 Non Implemented Instructions 21

Table 7 JTAG Port Signals 28

Table 8 BVCI Signal List 32

Table 9 MWIC to IBUS Interface 39

Table 10 Bus Bridge to External Memory System 40

Table 11 Unimplemented BVCI Interface Signals on the MWIC to IBUS Interface or IBUS to
External Memory 40

Table 12 DMP to IBUS Interface 42

Table 13 Bus Bridge to Memory Bus System 43

Table 14 Unimplemented BVCI Interface Signals 44

Table 15 DCCM Direct Memory Interface (DMI) 50

Table 16 XY DMI Interface Signals 57

Table 17 Processor Control Signal List 63

Table 18 Configurable Interrupt Lines 65

Table 19 Test Signal List 66

9 ARC® 700 External Interfaces Reference

Chapter 1 — Introduction
An ARC® 700 processor based design supports a number of processor island interfaces. These
interfaces encompass memory transactions, host debug access and miscellaneous control. The
following sections introduce the interfaces in more detail:

• Overview of Interfaces

• Block Diagram

• Signal Lists

Overview of Interfaces Introduction

10 ARC® 700 External Interfaces Reference

Overview of Interfaces
A given ARC® 700 design offers several processor island interfaces. These interfaces encompass
memory transactions, host debug access and miscellaneous control.

Interfacing to the processor is achieved mainly indirectly through the following components.

• JTAG communications module

• Bus Bridge

• Bus Interfaces

• Closely Coupled Memory Direct Memory Interface (DMI)

• XY Memory Direct Memory Interface (DMI)

• Control Signals (Clock, Reset, etc)

• Interrupt Unit

• Memory Management Unit (MMU) – as described in the ARC 700 MMU Reference

The processor island is the top-level processor island that should be used for integration into a custom
system. For additional information on alternative CPU Island interfaces see AHB Bus Bridge
Reference, AXI Bus Bridge Reference, and ARC Legacy Bus Bridge Reference.

For further information on the operation of the processor core see ARCompact Programmer's
Reference.

For information on the processor module hierarchy see the ARC 700 System Reference.

Introduction Block Diagram

ARC® 700 External Interfaces Reference 11

Block Diagram
 Example Processor Island Configuration

ARC 700 Core

Peripheral BVCI
Arbiter

Data Memory
Pipeline

(D-Cache, DCCM)

Memory Controller

SSRAM

peripherals

Instruction
Fetch

(I-Cache,
ICCM, IFQ)

Internal Bus

Conversion
Bridge

64-bit Memory Bus 32-bit BVCI Peripheral Bus

System BVCI Arbiter

Bridge Bridge Bridge

64-bit
System Bus

64-bit Buses

XY
Memory

Figure 1 Example External Bus System Architecture

Signal Lists
Various groups of interface signals may appear on the CPU Island. The following signal lists provide
more detail on these signal groups:

• JTAG Signal List

• BVCI Signal List

• MWIC Bus Bridge to External Bus System Signal List

• DMP Bus Bridge to External Bus Signal List

• CCM DMI Signal List

• XY DMI Signal List

• Processor Signal List

Signal Lists Introduction

12 ARC® 700 External Interfaces Reference

• Interrupt Signal List

• Test Signal List

13 ARC® 700 External Interfaces Reference

Chapter 2 — JTAG (Joint Test Action Group)
Communication Module

The JTAG interface has been introduced as a solution for communicating with the standard ARC 700
and ARCangel systems.

The JTAG module draws its interface and protocol from the IEEE STD 1149.1, providing customers
with a standard that is universally recognized. The module contains logic for communicating with the
ARC 700 processor and its memory system, providing the host with a high level role where
transaction parameters are simply specified.

The following subsections outline principles required in order to communicate with the ARC 700
processor and system memory via the JTAG module:

• JTAG Interface

• JTAG Programmer’s Model

• JTAG Port

• Setting Up Read/Write Transactions

• JTAG Port Reset

• PC - JTAG Communications

JTAG Interface JTAG (Joint Test Action Group) Communication Module

14 ARC® 700 External Interfaces Reference

JTAG Interface
The host device communicates with the JTAG module via four interface signals, these four interface
signals are required in order to satisfy the IEEE STD 1149.1 standard. These interface signals provide
the host with the ability to control and serially pass data in and out of the module. These signals are
shown below:

• TCK – Test Clock

• TMS – Test Mode Select

• TDI – Test Data In

• TDO – Test Data Out

An optional JTAG interface signal, Test Reset (TRST*) has been provided to allow asynchronous
initialization of the JTAG port without supplying a clock. Its use is necessary in simulation, but in
actual operation it may be tied high. In addition, there is a chip-level signal not specified by the IEEE
standard: RTCK. This is a copy of TCK that has been re-driven in the I/O pad ring. If the JTAG
emulator chooses to take advantage of it, by using it to clock in TDO, it can compensate for the cable,
board, and I/O pad delays to increase the speed at which TCK may be run. This becomes especially
important if many chips are chained together on the board.

The module provides various groups of interface signals.

• The Memory Arbitrator Interface: The first group interfaces to the memory arbitrator (refer to
the ARC 700 System Components Reference) and allows the module to access system memory.

• ARC 700 Host Interface: The second group drives the ARC 700 host interface bus, providing
essential access to the ARC 700 processor's internal register space.

• Boundary Scan interface: The third group of signals have been provided in order to allow the
inclusion of a Boundary Scan Register. Refer to The Boundary Scan Register (Instruction Code
0x0 and 0x1) for a detailed explanation. While this capability remains, the ARC 700 JTAG port
has been designed to allow on-chip chaining with other TAP controllers. It may provide an easier
integration with ATPG flow to use the TAP controller produced by the ATPG software, and chain
it with that of the ARC 700.

• Miscellaneous signals: The final group of signals are provided for system control:

 A processor clock signal is provided allowing the module to carry out read and write
transactions to the devices that are synchronized to the processor clock. The JTAG clock,
TCK, is designed to run at maximum frequency is 50% of the processor clock. In RTL
simulation the ratio of system clock to processor clock may affect the maximum frequency of
TCK. In silicon there are additional timing constraints, for example the time from the
transition on the input JTAG clock to the output of JTAG TDO must be allowed for.

 A system clear signal is included allowing the module to be reset asynchronously with all
devices in the system.

 An output enable signal, jtag_tdo_zen_n, is provided allowing the output TDO to go high
impedance when inactive. Tri-state is provided for the case of parallel connection of the other
driving circuitry to TDO. Should TDO not be connected to any other driving circuitry, the tri-
state output need not be implemented.

JTAG (Joint Test Action Group) Communication Module JTAG Interface

ARC® 700 External Interfaces Reference 15

 The JTAG busy signal, jtag_busy, can be used to provide a helpful indication that there is
activity on the debug channel, for example to drive an LED on a development board. If not
required, this signal can be left open.

Figure 2 illustrates the signals that make up the JTAG module.

JTAG
Module

Host
Interface
Signals

Memory
Arbiter
Interface

TCK
TDI
TMS
TDO

Host device
signals

Boundary
Scan

Signals

PROCESSOR CK

SYSTEM CLR

JTAG_TDO_ZEN_N

TRST*

Figure 2 The JTAG Communications Module

The TMS input interface signal should be connected to a pull up component as part of the IEEE STD
1149.1 requirement, thus allowing the module to be reset if the input to TMS is undefined (for
example high impedance) and TCK is applied. Pull-ups are not required for TDI, TDO or TCK. The
reset mechanism is described in The TAP Controller State Machine.

JTAG Signal List
The following JTAG interface signals may appear on the CPU Island:

Table 1 JTAG Signal List

Signal Direction Description

jtag_tdi Input JTAG data input
jtag_tms Input JTAG mode select
jtag_tck Input JTAG clock
jtag_trst_n Input JTAG reset
jtag_tdo Output JTAG data output
jtag_tdo_zen_n Output JTAG TDO output enable signal
jtag_rtck Output JTAG re-timed clock
jtag_busy Output JTAG busy signal

JTAG Pin Connector
This is the recommended board connector to attach a debug emulator to the JTAG signals on the
board. It is a 20-pin IDC connector, with pins on 0.100” centers, keyed and shrouded.

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

16 ARC® 700 External Interfaces Reference

19

17

15

13

11

9

7

5

3

1

20

18

16

14

12

10

8

6

4

2 Vsupply
GND

GND
GND

GND
GND

GND
GND

GND
GND

VTref
TRST*

TDI
TMS
TCK

RTCK
TDO

(leave open)
(leave open)
(leave open)

Figure 3 Recommended JTAG Pin Connector, Top View

Table 2 JTAG Pin Connector Descriptions

Signal Description and Notes

TCK Clock input to debug port. Must be pulled to defined state on board for so as
not to clock circuitry when no debug emulator is connected.

RTCK Clock output. If not implemented on chip, drive from TCK on board.
TMS Test Mode Select input. Must be pulled up on board.
TDI Test Data In input. Must be pulled up on board.
TDO Test Data Out output. Must be pulled up on board.
TRST* Test Reset. Must be pulled up on board.
VTref Target Reference Voltage. Should be tied to Vdd of chip.
Vsupply Supply voltage for emulator pod. Should be tied to Vdd of chip.
GND Ground. Tie to Vss of chip.

While it is not necessary, the speed of the JTAG debug connection can be maximized if TDO and
RTCK use drivers capable of driving 50-Ohm transmission lines.

JTAG Programmer’s Model
The JTAG module includes eight internal registers as shown in Table 3. The host can define a read or
write transaction to a memory location or an ARC 700 register through some of these internal
registers. Six of the eight registers are collectively referred to as data registers (IEEE STD 1149.1).
The remaining registers are the instruction register, which is central in the role of accessing all data
registers and the Boundary Scan register.

Table 3 JTAG Registers

Value Code JTAG Register TYPE

N/A N/A INSTRUCTION REGISTER* Instruction

0x8 1000 JTAG STATUS REGISTER Data

0x9 1001 TRANSACTION COMMAND REGISTER Data

0xA 1010 ADDRESS REGISTER Data

0xB 1011 DATA REGISTER Data

0xC 1100 IDCODE REGISTER Data

0xF 1111 BYPASS REGISTER* Data

0x0/0x1 0000/0001 BOUNDARY SCAN REGISTER* BSR

JTAG (Joint Test Action Group) Communication Module JTAG Programmer’s Model

ARC® 700 External Interfaces Reference 17

NOTE * Required as part of IEEE STD 1149.1 specification.

Each of the registers are described in the following sections:

• The Instruction Register

• The JTAG Status Register (Instruction Code 0x8)

• The Transaction Command Register (Instruction Code 0x9)

• The Address Register (Instruction Code 0xA)

• The Data Register (Instruction Code 0xB)

• The IDCODE register (instruction code 0xC)

• The Bypass Register (Instruction Code 0xF)

• The Boundary Scan Register (Instruction Code 0x0 and 0x1)

The Instruction Register
The Instruction register is used to gain access to all data registers. Each data register is addressed by a
unique 4-bit instruction code.

31 4 3 2 1 0

Reserved Inst Code

In order to access the required data register, the correct code should be written into the instruction
register. Figure 4 illustrates the relationship between the instruction and data registers. The instruction
shift register is loaded with 0x1 in Capture-IR, so that external circuitry, by looking for a transition
when in Shift-IR, can detect a stuck-at fault in the JTAG chain.

NOTE Because of this behavior, which is specified in IEEE 1149.1, the current contents of the instruction
register can not be read by the external circuitry. The register itself is initialized to point to the
IDCODE register in Test-Logic-Reset.

DATA REGISTER 1

DATA REGISTER 2

DATA REGISTER 3

IINSTRUCTION REGISTER 1

WE0

WE1

WE2

PATH
MUX

4

N

N

N

N

N

Write Data
Bus

Read Data
Bus

Write enable signals
decoded from the

Instruction Register

Figure 4 Data Registers Access via the Instruction Register

In addition to accessing the data registers (refer to subsections The JTAG Status Register (Instruction
Code 0x8) to The Bypass Register (Instruction Code 0xF)), the instruction register is also used to
select a test sequence that should be applied to the device. These test sequences use a special data
register known as the Boundary Scan Register (refer to The Boundary Scan Register (Instruction
Code 0x0 and 0x1)).

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

18 ARC® 700 External Interfaces Reference

The JTAG Status Register (Instruction Code 0x8)
The JTAG Status Register is read only and is used by the host device to obtain important information
on the state of the JTAG module or the result of an ARC 700 processor or memory access. The bits
of the register are assigned as follows.

31 4 3 2 1 0

Reserved PC RD FL ST

31 24 23 4 3 2 1 0

Each field in the JTAG Status register reflects the following information:

• Bit 0 – Stalled (ST) flag indicates that the current transaction has stalled. This flag is set when
the ARC 700 processor asserts the hold_host signal to lengthen the duration of a read or write
transaction.

• Bit 1 – Failure (FL) flag indicates that a read (or write) has failed when it is true. For example,
this flag would be set if an access to a core register is attempted when the processor is running.
The failure flag is cleared automatically when a new transaction is started.

• Bit 2 – Ready (RD) flag indicates whether the JTAG module is available to accept another
transaction command. This flag is set when a transaction has just completed or when the JTAG
module is idle.

• Bit 3 – PC_SEL (PC) flag, is set to the value that is assigned to the AUX_PCPORT auxiliary
register (refer to the Extension Functions section in the ARCangel development board manual).
For example, this flag would be set if 1 was written to the AUX_PCPORT auxiliary register, and
cleared if 0 was written to AUX_PCPORT.

• Bits 31 down to 24 – Reserved.

The Transaction Command Register (Instruction Code 0x9)
The Transaction Command Register is used to specify the communication transaction that should be
performed.

31 4 3 0

Reserved Command

The JTAG module supports eight different accesses or transactions, which are shown in Table 4 with
their associated encoding.

Table 4 JTAG Read/Write Transactions

Value Code Communication Transaction

0x0 0000 Write to a memory location

0x1 0001 Write to a ARC 700 core register

0x2 0010 Write to a ARC 700 auxiliary register

0x3 0011 NOP, The register is initialized to this value

0x4 0100 Read from a memory location

0x5 0101 Read from a ARC 700 core register

0x6 0110 Read from a ARC 700 auxiliary register

JTAG (Joint Test Action Group) Communication Module JTAG Programmer’s Model

ARC® 700 External Interfaces Reference 19

Value Code Communication Transaction

0x7 0111 Write to a MADI* register

0x8 1111 Read from a MADI* register

NOTE The MADI register is only available where the debugging of multiple ARC 700 processor systems is
required. The MADI system is no longer the recommended way of debugging multiple cores on a
chip. ARC now recommends that each processor have its own JTAG port, and that these be chained
together by distributing TCK, TMS, and TRST* in parallel, and connecting the TDO from one
processor to the TDI of the next.

The Address Register (Instruction Code 0xA)
The Address Register is used to supply the address for read and write transactions to the ARC 700
registers and system memory.

31 0

Address Register

Accesses to memory must always be given in bytes. Access to the ARC 700 internal registers is
specified by their register numbers. The value contained in this register is automatically incremented
by four (a memory access) or one (an ARC 700 register access) when a read or write transaction has
completed. This feature is used to save valuable cycle time when downloading / uploading a stream of
data, hence the register does not need to be rewritten with the next address value.

The Data Register (Instruction Code 0xB)
The data register performstwo functions. When data is written to this register, it is placed into a write
buffer that drives two write data buses, one for the ARC 700 host interface and other for the memory
arbitrator interface. The bus is used to specify the data contents that should be written when
performing a write transaction.

31 0

Address Register

When reading this register a read buffer is selected. The read buffer is used to store data retrieved
from the target device during a read transaction. The appropriate read data bus (arbitrator or host
interface) is selected according to which device the host is accessing.

The IDCODE register (instruction code 0xC)
The IDCODE register is used by the JTAG emulator to identify the core as an ARC 700 core.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JTAG
Version ARC Number ARC Type ARC JEDEC Manufacturer’s Code 1

Each field in the IDCODE register reflects the following information:

• Bits 31 down to 28 — These bits define the version of the JTAG module. Currently set to the
value 0x1.

• Bits 27 down to 18 — This field will be set by the designer to the number of ARC processors
swithin the system. It will have the same value as the corresponding field in the IDENTITY
register in auxiliary space, if there are fewer than 256 ARC processors in the system.

JTAG Programmer’s Model JTAG (Joint Test Action Group) Communication Module

20 ARC® 700 External Interfaces Reference

• Bits 17 down to 12 — This field will be set to 0x03 to identify the processor type as an ARC 700
type.

• Bits 11 down to 1 — This field contains the code assigned to ARC International by JEDEC,
encoded as specified in the IEEE 1149.1-2001 standard. ARC has been assigned the
manufacturer’s code 0x58 in group five, so this field encodes to 0100 101 1000.

• Bit 0 — This field is fixed at 1, as specified in the IEEE 1149.1-2001 standard. This is used,
along with the previous field, to allow automatic discovery when the chain is initialized. JEDEC
will never assign the manufacturer’s code 0x7F in group 0. The JTAG emulator, therefore, can
shift the 32-bit IDCODE 0x000000FF into TDI at the beginning of the chain after reset. The
standard specifies that upon receiving a TCK when in the Reset-Test-Logic state, the instruction
register will be initialized to point to the IDCODE register if it exists, and to the BYPASS register
otherwise. In Capture-DR, the shift register is loaded with this 32-bit code if IDCODE is in the
instruction register, and with a single bit of 0 if BYPASS is. Thus the external circuitry can
examine TDO in Shift-DR, and know if it’s zero that this TAP controller has only a 1-bit bypass
register, and if it’s one that this TAP controller has a 32-bit IDCODE register. By shifting through
looking for these until the 0x000000FF appears, the emulator can uniquely identify the number
and kind of devices in the chain.

The Bypass Register (Instruction Code 0xF)
The Bypass Register is required as part of the IEEE STD 1149.1 standard.

31 1 0

Reserved BP

When this register is selected, the serial data input (TDI) is connected to the serial data output (TDO)
through this register. The data on TDI is passed to TDO on the rising edge of the JTAG clock TCK
when in Shift-DR, and the register is initialized to 0 in Capture-DR. In all other states, the data in this
register is held.. The Bypass register is automatically selected when a reset is applied to the JTAG
module allowing the data on TDI to bypass the core logic to TDO.

The Boundary Scan Register (Instruction Code 0x0 an d 0x1)
The Boundary Scan register is selected when the four-bit code 0000 or 0001 is written into the
Instruction register. This register is used to retrieve the logic state of a device and control data on its
input and output pins. The register does not exist within the module and must be provided externally
(it is connected to the JTAG module via the boundary scan interface). The codes 0000 and 0001
relate to the EXTEST and SAMPLE/PRELOAD instructions as shown in Table 5. These boundary
scan instructions are necessary as part of the IEEE STD 1149.1. Refer to the Application Note
'Interfacing the JTAG Module to a Boundary Scan Register' for more detail.

NOTE Since the ARC 700 TAP controller may be chained on the chip with other TAP controllers, use of a
separate TAP controller known to be compatible with the user’s test software is recommended.

Table 5 Instructions that Employ the Boundary Scan Register

Value Code Instruction

0x0 0000 EXTEST

0x1 0001 SAMPLE/PRELOAD

The instructions contained in Table 6 have also been defined in the IEEE STD 1149.1. These are
optional instructions and are not supported with version 1.0 of the JTAG module.

JTAG (Joint Test Action Group) Communication Module JTAG Port

ARC® 700 External Interfaces Reference 21

Table 6 Non Implemented Instructions

Instruction Description

INTEST Performs an internal test (uses the boundary scan register)

RUNBIST Runs an internal core logic test (additional logic)

USERCODE Captures user defined information about a device (additional logic)

JTAG Port
The block diagram shown in Figure 5 shows how the JTAG communications port integrates within an
ARC 700 system. It is linked to the host interface of the ARC 700 processor in addition to system
memory via the Data Memory Pipeline (DMP).

JTAG
PORT TMS

TDI
TCK

TDO

ARC 700
Processor

Data Memory
Pipeline (DMP)

Host
Interface

To the Host

TRST*

Figure 5 A JTAG Port with an ARC 700 Processor

• The TAP Controller

• The TAP Controller State Machine

• The Debug Port

• The Host Interface to BVCI Target

The TAP Controller
The Test Access Port (TAP) controller is central to the operation of the JTAG module as shown in
Figure 6. All internal register accesses are performed serially using the TAP controller. An
accompanying block, the Debug Port, serves as the workhorse, performs the majority of internal
(accessing internal JTAG registers) and external (performing BVCI transactions) tasks. The Debug
Port and the TAP Controller are clocked off of TCK, and a separate module synchronizes the BVCI
initiator signals to the system clock. On the other side of the BVCI Debug Interface, there is a module
that contains the address, data, command, and status registers, and handles the host interface and
DMP transactions: the Host Interface to BVCI Target module. This allows the user, if desired, to
replace the JTAG port, either by a custom interface to an external debugger, or to another processor in
a master/slave configuration..

JTAG Port JTAG (Joint Test Action Group) Communication Module

22 ARC® 700 External Interfaces Reference

JTAG Port

TAP Controller Debug Port

System Clock
Sync

Host
Interface to
BVCI Target

TAP FSM
state info

Address &
Command

BVCI
Address,

Command,
& cmdval

BVCI Data

BVCI
Debug
Inter-
face

Host
Interface

DMP

TRST*

TDO

TCK

TDI

TMS

To the
Host

Figure 6 Internal Structure of the JTAG Port

The TAP controller is an internal state machine that is controlled entirely by the host using the TMS
and TCK interface signals. The controller is used to indirectly initiate communication transactions and
access the internal JTAG registers. The state machine consists of 16 states that are connected together
as shown in Figure 7.

The TAP Controller State Machine

Capture-DR

Shift-DR

Exit2-DR

Pause-DR

Exit1-DR

Update-DR

Select-DR-Scan Run-Test/Idle

Test-Logic-Reset

Capture-IR

Shift-IR

Exit2-IR

Pause-IR

Exit1-IR

Update-IR

Select-IR-Scan

TMS=

Figure 7 TAP Controller State Diagram

Each state contains at least one entry point with two possible exit paths. A state transition is
performed on the rising edge of TCK. The decision to determine the exit path is made according to the
logic level of TMS.

JTAG (Joint Test Action Group) Communication Module JTAG Port

ARC® 700 External Interfaces Reference 23

The Test-Logic-Reset state is used to initialize all internal JTAG registers and control signals
to default contents and inactive logic levels respectively. The state is entered immediately when
TRST* is asserted. In addition, this state can also be entered (regardless of the current state) at any
time during operation by holding TMS high and applying a maximum of five clock pulses on TCK.

The Run-Test/Idle state always precedes the Test-Logic-Reset, Update-DR and
Update-IR states on the rising edge of TCK when TMS is low. This state is employed to initiate a
read/write access or place the JTAG module in the idle state. The read/write access defined by the
address, data and command registers only occurs once on entry to Run-Test/Idle.

The remaining section of the state diagram (in Figure 7) contains two state sequence structures that
are used to access all internal JTAG registers. Registers can be written to or read from serially using
the TDI and TDO signals along with the aforementioned TCK and TMS signals. Both structures are
identical, however, as denoted by the mnemonics IR and DR, one structure is used to access the
instruction register and the other dedicated solely to accessing all data registers.

An internal JTAG register is accessed by placing the TAP controller into the appropriate scan
structure (Select-DR-Scan or Select-IR-Scan). The data contents of the selected register
are loaded into a shift register in the Capture-xR state. The state is then entered from the
Select-xR-Scan state by pulling TMS low and applying a clock pulse on TCK. Capture occurs
when the Capture-xR state is exited.

The shift register is used to shift data into the chain from TDI (write phase) simultaneously shifting
data out of the chain at TDO (read phase).

By holding TMS low and applying a second clock pulse on TCK the TAP controller goes into the
Shift-xR state. The Tap Controller remains in the Shift-xR state when TMS is held low. This
state allows data to be loaded serially (least significant bit first) into the shift register. The TDI signal
is always sampled on the rising of edge of TCK, starting on the second entry into the Shift-xR
state. The data shifted out is placed on TDO on the falling edge of TCK starting on the first entry into
the Shift-xR state. The last sample of TDI is always performed when exiting the Shift-xR
state. For instance, when the instruction register contains the BYPASS instruction, a 0 is loaded into
the 1-bit bypass register on the clock that exits Capture-DR and enters Shift-DR. At this point,
the 0 will appear on TDO. On the next clock, TDI will appear on TDO, and data will continue to be
shifted through until the final TDI is shifted to TDO on the clock which exits Shift-DR and enters
Exit1-DR.

When the data is finally shifted in or out of the shift register, the selected JTAG register is updated
with the shift register contents when the TAP controller is placed into the Update-xR state.
Updating occurs on the falling edge of TCK after the state is entered.

The remaining states Pause-xR and Exit2-xR are used to stall the shift process if the data to be
shifted in cannot be presented in time for the next rising edge of TCK (assuming a continuous
frequency on TCK).

JTAG Port JTAG (Joint Test Action Group) Communication Module

24 ARC® 700 External Interfaces Reference

SELECT-DR-SCAN SHIFT-IR-STATE EXIT1-IR

TCK

TMS

TAP
STATE

TDI

TDO

Shift Data on rising edge of TCK

Captures the code ‘1001’
into the shift register

First output of TDO (sample TDO
after the falling edge)

HIGH IMPEDENCE

CAPTURE-IR SELECT-IR-
SCAN

Last output of TDO

Figure 8 Loading Data into the Shift Register

The timing diagram in Figure 8 illustrates the concept of shifting data into the shift register using
TCK, TMS & TDI. The diagram illustrates the host device writing to the instruction register with the
four-bit value 1010, thus selecting the Address register. In the capture stage the four-bit value 0001
is loaded into the shift register ready to be shifted out. The instruction register is not updated (and the
Address register is not selected) with the shift register contents until the Update-IR state is entered.
Following the Update-IR state the Select-DR-Scan state structure is entered to access the
Address register.

During the Capture-IR phase the four-bit value 0001 is always loaded into the shift register,
regardless of the instruction register contents. The first two least significant bits aid in diagnosing
faults along the IEEE 1149.1-1990 bus.

The Debug Port
The debug port module contains all the registers specific to the JTAG interface. This includes the
instruction and data shift registers, the instruction register itself, the bypass register, and the IDCODE
register. It also contains a restricted BVCI initiator, which, in conjunction with the system clock
synchronization module, is responsible for access to the address, data, transaction command, and
status registers, and for initiation of read and write accesses. It must be stressed that the debug BVCI
interface is completely separate from the memory BVCI interfaces. The address space of the debug
BVCI interface contains only six valid addresses in its stock configuration: the addresses of the
address, data, transaction command, and status registers, along with two special addresses which,
when written with any data, cause the read/write access to be initiated and the address, data, and
command registers to be reset, respectively.

The Host Interface to BVCI Target
The address, data, status, and transaction command registers are to be found in the host interface to
BVCI target module (as shown in Figure 9). It contains a state machine, which performs all read and
write bus transactions that are supported by the JTAG module. This is providing there is a valid code
in the Transaction Command register; an access is initiated by placing the TAP controller into the
Run-Test/Idle state, which causes the debug port to write the do_cmd address on the BVCI
interface. This request is then fed to the state machine. The scheduler is responsible for verifying

JTAG (Joint Test Action Group) Communication Module Setting Up Read/Write Transactions

ARC® 700 External Interfaces Reference 25

transaction requests and providing the mechanism that allows the host device and the JTAG module
to maintain a strict synchronizing relationship.

Address,

Data, and
Command
Registers

Debug
BVCI
Interface

State

Machine

Host Interface to BVCI Target

ARC 600
Interface

DMP Scheduler

Figure 9 Internal Structure of the Host Interface t o BVCI Target Module

The scheduler verifies a transaction request from the host device by checking the value contained in
the Transaction Command register. The transaction request signal is asserted only when the
Transaction Command register contains a valid code and a write to the do_cmd address occurs on the
debug BVCI interface. The scheduler asserts a transaction request signal to start the defined bus
transaction. The BVCI target always responds to all commands in a single cycle. It is the
responsibility of the debugger to maintain synchronization by polling the status register for the
READY bit after an access has been started.

Setting Up Read/Write Transactions
A guide through the stages of defining and initiating read and write accesses:

• Setting up a Write Access to the ARC 700 Processor or Memory

• Accessing the Status Register

• Setting up a Read Access from the ARC 700 Processor or Memory

Setting up a Write Access to the ARC 700 Processor or Memory
A write access requires placing the TAP controller into the Test-Logic-Reset state. This should
reset the JTAG module. This initializes all the internal JTAG registers to default values and all
interface control signals to inactive logic levels. This initialization process is performed by asserting
TRST* or by holding TMS high and applying a maximum of five clock pulses on TCK. This will
ensure that when the Run-Test/Idle state is entered a bus transaction is not triggered from a valid
code already contained in the Transaction Command register.

The reset procedure is not required for every read and write access, and is performed only when there
has been a system reset. The next stage is to set-up the transaction parameter registers. These include
the Address register, Data register and the Transaction Command register.

The contents of the Address and Data registers are loaded with the appropriate values so that the write
access can be performed on the ARC 700 processor or to memory. Firstly, the instruction register is
loaded with the code for accessing the Data register. This is accomplished by entering the Select-
IR-Scan state and updating the Instruction register. Then the code 1011 for the Data register is

Setting Up Read/Write Transactions JTAG (Joint Test Action Group) Communication Module

26 ARC® 700 External Interfaces Reference

serially loaded in the SHIFT-IR state. The timing diagram for writing the instruction register with
the code 1011 which selects the Data register is shown in Figure 10.

SELECT-DR-SCAN SHIFT-IR-STATE EXIT1-IR

TCK

TMS

TAP
STATE

TDI

TDO HIGH IMPEDENCE

CAPTURE-IR SELECT-IR-
SCAN

X X

UPDATE-IR SELECT-DR
SCAN

Figure 10 Loading the Instruction Register

X =Don’t care, Z = high impedance

The Select-DR-Scan state is then selected to serially load in the data to be employed by the write
data bus when write access is performed. This is shown in the timing diagram in Figure 11.

SELECT-DR-SCAN SHIFT-DR-STATE EXIT1-DR

TCK

TMS

TAP
STATE

TDI

TDO HIGH IMPEDENCE

CAPTURE-DR SELECT-DR-
SCAN

X X

UPDATE-IR SELECT-DR
SCAN

The 32-bit data is being serially loaded
into the Data Register.

Figure 11 Loading the Data Register

The Address register is now accessed by loading the code 1010 into the instruction register. We then
enter the Select-DR-Scan state structure and serially load in the data to be used on the address
bus.

The last stage involves writing the Transaction Command register with the code instructing the JTAG
module to perform a write transaction to either the memory or the ARC 700 registers.

Once all the transaction parameters have been setup, the write transaction is started by placing the
TAP controller into the Run-Test/Idle state.

To obtain information about the transaction, the JTAG Status register is accessed. Since this is a read
only register the signal supplied on TDI is ignored when the register contents are shifted out through
TDO. The appropriate bit fields are then checked to verify a write transaction was performed.

Accessing the Status Register
The JTAG Status register is accessed in the following way, the first bit in the Status register (refer to
The JTAG Status Register (Instruction Code 0x8)) is shifted out to determine whether the JTAG
module has been stalled. If the stalled bit is set, then the Select-DR-Scan state structure is exited
and returned to later. This happens if a requested transaction is already underway.

JTAG (Joint Test Action Group) Communication Module JTAG Port Reset

ARC® 700 External Interfaces Reference 27

If the JTAG module is not stalled, then the second bit is shifted out of the Status register to determine
whether that transaction has failed. If the failed bit is set then the Select-DR-Scan state structure
is exited.

If the failed bit is not set then the ready bit is shifted out to determine whether the transaction has
completed or not. If the ready bit is set, then the transaction has finished and a new transaction can be
started. If it has not been set, then the Select-DR-Scan state structure is exited and the above
procedure is repeated.

The PC_SEL is an optional bit that does not need to be shifted out.

Setting up a Read Access from the ARC 700 Processor or Memory
Setting up a read transaction follows almost the same procedure as setting up a write transaction.

The Address register is accessed by writing the 4 bit code 1010 into the instruction register.
Select-IR-Scan state structure is selected and the code 1010 is serially loaded. When the
Update-IR state is entered the instruction register is updated and the Address register is selected.

SELECT-DR-SCAN SHIFT-IR-STATE EXIT1-IR

TCK

TMS

TAP
STATE

TDI

TDO HIGH IMPEDENCE

CAPTURE-IR SELECT-IR-
SCAN

X X

UPDATE-IR SELECT-DR
SCAN

Figure 12 Loading the Instruction Register (Select Address Register)

The data register does not need to be accessed at this stage as a read transaction is being performed.

The last stage of setting up the transaction parameter registers involves writing to the Transaction
Command register with the required read transaction.

When all the transaction parameters have been set up the access is started by placing the TAP
controller into the Run-Test/Idle state.

To obtain information about the transaction, the JTAG status register is interrogated. Since this is a
read only register the signal supplied on TDI is ignored when the register contents are shifted out
through TDO. The appropriate bit fields are then checked to verify the read transaction. Refer to
Accessing the Status Register for a standard routine on how to decode the JTAG Status register.

When the transaction has completed successfully the data register is selected. Select-IR-Scan
state structure is selected and the code 1011 is serially loaded into the instruction register. The
Select-DR-Scan state is then entered and data is shifted out from the selected device.

JTAG Port Reset
When implementing a system with a JTAG port, pin SS1 must be connected to logic on the board
such that, when the PC sets signal SS1 low (active), signal xclr will be driven low to reset the ARC
700 processor.

PC - JTAG Communications JTAG (Joint Test Action Group) Communication Module

28 ARC® 700 External Interfaces Reference

PC - JTAG Communications
The ARCangel3 (AA3) Development board features an interface to a bi-directional PS/2 parallel port.
This port allows the following functions to be performed:

• start, stop and single step the ARC 700 processor

• read/write all core registers

• read/write all auxiliary registers

• read/write external memory

• perform system reset

• generate a ARC 700 interrupt

With the exception of resets, all functions are performed by downloading a 32-bit address/control
word, followed by 32 bits of send or receive data. The 32 bit values are sent serially, least significant
bit first.

Table 7 shows a summary of the signals in use on the parallel port connector.

Table 7 JTAG Port Signals

Pin Driver Signal Function

1 pc TCK Test Clock - Used to control data flow. Data from the PC
latched on rising edge.

2

3

4

5

6

7

Not used

8 pc TMS Test Mode Select – used to select the TAP controller states

9 pc TDI Test Data In - Serial Data input

10 Not used

11 aa busy Valid for AA3.

Set high whenever AA3 JTAG port is in non-idle state.

Drives the right-hand LED on AA3.

12 Not used

13 aa TDO Test Data Out – serial data out

14 Not used

15 Not connected

16 pc ss0 Valid for AA3. See following page.

17 pc ss1 Valid for AA3. See following page.

18 0v

19 0v

JTAG (Joint Test Action Group) Communication Module PC - JTAG Communications

ARC® 700 External Interfaces Reference 29

Pin Driver Signal Function

20 0v

21 0v

22 0v

23 0v

24 0v

25 0v

As a requirement for the SeeCode DLL an external reset signal should be provided in the JTAG
interface version of the ARC 700 processor allowing the chip to be reset. There is a soft reset
mechanism in the JTAG module that is used to reset JTAG module alone.

ss0 and ss1 are used as follows when a JTAG comms port is implemented on the AA3 development
board. At the D25 connector to the AA3 board, the functionality of ss0 and ss1 is:

ss0 ss1

0 0 Reset the ARC 700 system on the FPGA

1 0 FPGA Configuration download

0 1 ARC 700 system in normal operation

1 1 ARC 700 system in normal

ARC® 700 External Interfaces Reference 30

Chapter 3 — Bus Bridge
A bus bridge provides several useful architectural functions. The bridge provided performs the
following functions.

• Bus protocol translation

• Bus timing registering

• Clock crossing

Bus protocol translation enables the ARC 700 design to interface to any bus topology that uses a
specific bus protocol. The ARC 700 processor uses native BVCI (mandatory signaling subset as
defined by pages 27, and 29 - 30 of the VSI Alliance Virtual Component Interface Standard Version 2
(OCB 2 2.0)). In order to interface to a non-BVCI memory system, an appropriate bus bridge is
needed that can perform BVCI to non-BVCI bus protocol standards conversion. The default bridge
that is included in an ARC 700 processor build performs no bus protocol translation, therefore the
default memory interfacing standard it BVCI.

Bus timing isolation is used to register signals that are late arriving (relative to the rising edge of the
CPU clock) from the various processor components, such as the instruction and data caches. The
output of the bridge interface ensures that a transaction starts on the rising edge of the clock,
providing a complete cycle for any proprietary memory subsystem.

Clock crossing provides the ability to support a different clock speed on the system bus to that of the
processor internal bus (BVCI).

The following sections describe the bus bridges in more detail:

• Bus Bridge Block Diagram

• BVCI Protocol

• Bus Bridge Block Diagram

• Clock Synchronization Unit

• Clock Crossing BVCI Bridge

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference.

Bus Bridge Bus Bridge Block Diagram

ARC® 700 External Interfaces Reference 31

Bus Bridge Block Diagram

ARC EMAC
8

ARC UART
8

BVCI Arbiter

BVCI Memory Controller

Processor Core

JTAG

Off-chip RAM

D-Cache Debug
Interface

Core
Regs

Ext
Regs

Aux
Regs

Ext
Inst.

HwAp
Int.

Interrupt
System

Reset
IRQ3
IRQn

ARC EMAC

2

ARC EMAC

1

(up to 8)

ARC USB
1

BVCI Bridge

Target

Initiator Initiator

Target

ARC UART
2

 ARC UART

1

(up to 8)

I-Cache

Bridge Bridge

Example Memory
Subsystem

Processor Island

BVCI BVCI

Memory System
Specific Protocol

Figure 13 Example of a Typical ARC 700 System

BVCI Protocol
Basic Virtual Component Interface (BVCI), is a sub-set of the Virtual Component Interface (VCI)
standard, and it is a protocol standard resulting from the work of the On-Chip Bus Development
Working Group of the Virtual Socket Interface Alliance (VISA). This open standard was written to
provide a general interface specification for Virtual Components (hardware Intellectual Property) so
that they can be easily used to built System-on-Chip (SoC). Designed primarily as a point-to-point
on-chip protocol, it is technology independent but has the advantage of being a powerful protocol,
and yet inherently efficient and simple to implement. The VCI standard defines three levels of
Complexity, and they are, in the order of complexity, Peripheral VCI (PVCI), Basic VCI (BVCI) and
Advance VCI (AVCI). PVCI protocol is a sub-set of BVCI and AVCI adds onto BVCI by specifying
optional signals that can be added.

The internal processor bus protocol implements BVCI. BVCI defines an inherently split protocol. It
allows multiple access commands to be sent from an initiator interface to a target interface before
data or responses of the commands are returned. Its flexibility also makes it suitable for most
applications, and makes it relatively easier to translate to other protocols.

With the BVCI protocol, individual access commands are sent as cells over a synchronous command
bus. The read data and access response are then returned as cells over a separate response bus. These

BVCI Protocol Bus Bridge

32 ARC® 700 External Interfaces Reference

cells are combined to form packets (burst transfers). Handshaking between initiator and target
interface at cell level is performed using simple cell valid and acknowledgement signals. One or more
cells are packaged into packets, using additional signals to denote the last cell of a packet and define
the addressing scheme.

Detailed information on the BVCI protocol may be obtained from:

• VSI Alliance - www.vsi.org: Virtual Component Interface Standard (v2.0 - OCB 2 2.0)

BVCI Signal List
The following BVCI interface signals may appear on the CPU Island, where * is the particular BVCI
signal group:

Table 8 BVCI Signal List

Signal Direction Description

*_address[31:0] Output Physical Byte Address. It needs to be updated on every cycle
during a burst.

*_be[7:0] Output Byte Enables. They can be byte, word, long word or double
long words sized transactions.

*_cmd[1:0] Output Command. The types that can be issued are:

• Read – 0x1

• Write – 0x2

• Locked Read – 0x3
*_cmdval Output Command Cell Validate. The values on the command bus are

valid when this signal is true.
*_eop Output End of Packet. This signal is asserted on the last burst cycle

to indicate the end of that burst request.
*_plen[5:0] Output Packet Length. Describes the packet length in bytes:

• Byte – 0x1

• Word (16 bits) – 0x2

• Longword (32 bits) – 0x4

• Burst of 32 bytes (4 cells packet) – 0x20
*_wdata[63:0] Output Write Data. This is the data from a write.
*_cmdack Input Command Acknowledge. Acknowledges the valid command

cell.
*_rdata[63:0] Input Read Data. This is the returning data from a read request.
*_reop Input End of packet on the response bus.
*_rspval Input Response Valid.
*_rerror Input Response Error. Bus errors are transferred directly to the

ARC 700 core via the BVCI interface.

http://www.vsi.org/

Bus Bridge Bus Bridge Block Diagram

ARC® 700 External Interfaces Reference 33

Bus Bridge Block Diagram

cbri

Memory System
Protocol

cksyn

cpu_clk

system_clk

BVCI bus

ibus I nternal BUS module (Bridge)
cbri C lock crossing BRI dge
cksyn C loc K SYN c Unit

ibus

266MHz*
266/133/66MHz*

Processor
BVCI Initiator

* Example frequencies.

Figure 14 Bus Bridge Structure (IBUS)

Logic that is contained within the bus bridge is referred to as the IBUS. The name Internal Bus is
derived from the concept of the processor island. A processor island denotes a collection of processor
specific components that operate from a single processor clock. Processor Island components natively
make use the BVCI protocol; therefore the IBUS protocol is BVCI.

The bridge is made up of two sub-modules and they are:

• Clock Crossing Bridge

• Clock Synchronization Unit

The Clock Crossing Bridge (CBRI) is responsible for converting accesses from a processor island
component (such as the instruction cache), which is on the CPU clock domain (clk_cpu) onto the
memory system clock domain (clk_sys). The supported frequency ratios of clk_cpu to clk_sys are
1:1, 2:1, 3:1 and 4:1, and both clocks have to be phased locked and clock tree balanced. This module
is also responsible for isolating the timing within the internal bus from that of the memory system
bus.

The Clock Synchronization Unit (CKSYN) is responsible for keeping track of the phase relationship
between clk_cpu, used within the processor island, and clk_sys. This unit sends out synchronization
signals to the bridge to help it latch and transfer data correctly.

All modules in the bridge module, except CKSYN, supports clock gating by generating a busy signal
whenever there are outstanding accesses being handled.

Clock Synchronization Unit
The Clock Synchronization Unit, called CKSYN, is used to provide synchronization signals to the
bridge so as to ensure that data on the BVCI bus can be transferred correctly across the clock domain.
This module generates a synchronization signal to support processor clock to system clock frequency
ratios of 1:1, 2:1, 3:1 and 4:1. Both clocks must be phased locked.

Figure 15 shows the design of the clock synchronization unit.

Clock Synchronization Unit Bus Bridge

34 ARC® 700 External Interfaces Reference

D Q D Q
D Q
EN

2 Bit Up
Counter

Q

CLR

EN

2'b01
=?

11
10
01
00

D Q
1

1

D Q
EN

D Q
EN

1

system_clk cpu_clk
cpu_clk

cpu_clk cpu_clk

cpu_clk cpu_clk

Toggle Edge Detect Phase
Counter Last Phase

Detect

Startup Mask
Generator

sync toggle

edge

count

ratio

2nd_last_ph

sync_mask

=?
2'b00 2 bits

2 bits

Figure 15 Design of the CKSYN

The CKSYN unit is used to generate a pulse on the synchronization signal (sync) that correspond to
the last main clock period that resides in the system clock domain. It does this without having to
resort to the use of the clock signals themselves as input signals, and without the need for the user to
configure the hardware via software programmable registers or via configurations during RTL
generation. This allows the module to be placed and routed without special consideration, allowing
the user to avoid complicated issues often related to using clocks as signals, and easing the task of
choosing or changing the system bus frequency throughout the SoC development cycle.

The CKSYN uses a number of logic units to generate the synchronization signal.

• Toggle Unit

• Edge Detection

• Phase Detection

• Mask Generator

• Last Phase Detect

Toggle Unit
The Toggle Unit generates a toggle signal (toggle) that changes at every rising edge of the system
clock (clk_sys).

Edge Detection
The Edge Detect unit detects the rising edge of the toggle signal on the CPU clock domain. This edge
signal (edge) will always go high at the first CPU clock (clk_cpu) period within a system clock
period (clk_sys).

Phase Detection
The Phase Counter Unit counts up continuously and gets cleared whenever the edge signal is high.
Hence the counter always counts up to one less than the number of CPU clock cycles that fit in the
system clock cycle. Therefore, for example, for a CPU clock to system clock frequency ratio of 4:1,
the counter counts continuously from 0 to 3. The range of clock ratios supported is dependent on the
width of the counter, with the largest ratio supported at 2N:1 for a N bit counter. For the bridge to
support up to 4:1, the counter only needs to be two bits wide.

Bus Bridge Clock Synchronization Unit

ARC® 700 External Interfaces Reference 35

Mask Generator
The Startup Mask Generator unit is basically a 2-bit shift register that turns the synchronization mask
off (sync_mask = 1) after two detected edges of the toggle signal. This mask is used to block incorrect
synchronization signal that can be generated during the start-up of this module after global reset.

Last Phase Detect
The Last Phase Detect unit is used to generate a pulse at the last CPU clock cycle within the system
clock cycle. Since it only needs to support up to 4:1 clock ratios, this module has been simplified. A
2-bit register is used to capture the count value at every toggle edge and it (ratio) represents the clock
ratio of the two different clocks, with “00” representing 1:1, “01” representing 2:1, “10” representing
3:1 and “11” representing 4:1. This value is then used to select from four different pulses that are
generated, (each pulse refers to a specific clock ratio). The first pulse type is for ratio 1:1 where the
pulse is always on. The second pulse type is for ratio 2:1, where the signal is set to high every time
the count value is at “01”. The third pulse type is for ratio 3:1, where the signal is set to high when the
count value is “00”. Finally the fourth pulse type is for ratio 4:1, where the signal is set to high when
the count value is “01”. The selected pulse signal is then combined with the mask signal through the
AND gate, and registered to become the synchronization (sync) output.

NOTE During global reset, all flops, registers and the counter are set to zero.

Figure 16, Figure 17, Figure 18 and Figure 19 show four example timing diagrams when dealing with
4:1, 3:1, 2:1 and 1:1 clock ratios respectively.

 rst
system_clk

toggle
cpu_clk

edge
count[1:0]

ratio
2nd_last_ph
sync_mask

sync

'b01 'b10 'b11 'b00 'b00 'b01 'b10 'b11 'b00 'b01 'b10 'b11 'b00 'b01 'b10 'b11 'b00 'b01 'b10
'b00 'b00 'b11

Figure 16 CKSYN Timing Diagram at 4:1 Clock Ratio

 rst
system_clk

toggle
cpu_clk

edge
count[1:0]

ratio
2nd_last_ph
sync_mask

sync

'b00 'b00 'b01 'b10 'b11 'b00 'b01 'b10 'b00 'b01 'b10 'b00 'b01 'b10 'b00 'b01 'b10 'b00 'b01 'b10 'b00 'b01
'b00 'b00 'b11 'b10

Figure 17 CKSYN Timing Diagram at 3:1 Clock Ratio

Clock Synchronization Unit Bus Bridge

36 ARC® 700 External Interfaces Reference

 rst
system_clk

toggle
cpu_clk

edge
count[1:0]

ratio
2nd_last_ph
sync_mask

sync

'b00 'b00 'b01 'b00 'b01 'b00 'b01 'b00 'b01 'b00 'b01 'b00 'b01 'b00 'b01
'b00 'b00 'b01

Figure 18 CKSYN Timing Diagram at 2:1 Clock Ratio

 rst
system_clk

toggle
cpu_clk

edge
count[1:0]

ratio
2nd_last_ph
sync_mask

sync

'b00 'b00 'b01
'b00 'b00 'b01

Figure 19 CKSYN Timing Diagram at 1:1 Clock Ratio

Bus Bridge Clock Crossing BVCI Bridge

ARC® 700 External Interfaces Reference 37

Clock Crossing BVCI Bridge
The CBRI is used to convert accesses between the two clock domains (clk_cpu and clk_sys). The
supported frequency ratios of clk_cpu to clk_sys are 1:1, 2:1, 3:1 and 4:1, in the bridge module.
However, this sub-module can support any ratios as long as the CPU clock is the same or higher
frequency than system clock, and where it is higher, it is multiple times the frequency of the system
clock. Both clocks have to be phased locked and clock tree balanced. This module is also responsible
for isolating the timing of the internal bus and the BVCI System Bus from each other.

The CBRI cannot perform data packing and unpacking when converting access from one clock
domain to another, and therefore, is essentially a bus repeater. It is capable of handling the crossing
clock domain with the help of the CKSYN unit.

system_clk
xx_rspack

D Q
EN

D Q
EN

Inward Control
system_clk

system_clk

D Q
EN

D Q
EN

Outward Control
system_clk

D Q

system_clk system_clk

D Q D Q

system_clk system_clk

Response Bus Response Bus

Command Bus Command Bus

xx_rspval

xx_cmdack
xx_cmdval

xx_cmdval
cbri_cmdack

cbri_rspval
xx_rspack

sync

Processor
Island Component

System Bus

CBRI

Command Bus
Repeater

Response Bus
Repeater

cbri_busy

D Q

cm
d_
bus
y

rsp
_b
usy

ib_cmdval

ib_cmdack

ib_rspval

ib_rspack

Figure 20 Design of the CBRI - Resets Not Shown

The CBRI is made up of a number of logic units:

• A command bus repeater module, used to deal with the command bus timing isolation.

• A response bus repeater module, used to deal with the response bus timing isolation

• Handshaking gating logic, used to ensure correct handshaking when crossing the clock domain

• An OR gate to combine the busy signals from the two repeaters.

ARC® 700 External Interfaces Reference 38

Chapter 4 — Bus Interfaces
This section summarizes the signal naming convention for the various processor island components
that attach to the bus bridges, as well as the bus bridge interface to the external memory system for
the following modules:

• Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)

• DMP to Memory Bus System (via Bus Bridge)

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference.

Bus Interfaces Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)

ARC® 700 External Interfaces Reference 39

Instruction Cache (MWIC) to Memory Bus
System (via Bus Bridge)
The instruction cache (MWIC) does not connect directly to the memory bus systems. An intermediate
bus bridge is used as shown in the following sections:

• MWIC and Bus Bridge Block Diagram

• MWIC to Bus Bridge Signal List

• MWIC Bus Bridge to External Bus System Signal List

• MWIC Unimplemented Signal List

• Big-Endian Configuration

• Interface Timing

MWIC and Bus Bridge Block Diagram

MWIC
(Multi-Way

Instruction Cache) Bus Bridge
(IBUS)

mwic_rspack

mwic_cmdval

mwic_eop
mwic_address

mwic_cmdack

mwic_rdata
mwic_rspval

Command Bus

Response Bus

B
V

C
I Initiator Interface

B
V

C
I T

arget Interface

32 bits

64 bits

B
V

C
I C

ustom
er Interface iini_rspack

iini_cmd

inini_eop
inini_address

inini_cmdack

iini_rdata
iini_rspval

Command Bus

Response Bus

32 bits

64 bits

iini_rerror mwic_rerror

External
Memory Bus
System

Figure 21 Instruction Cache to IBUS

MWIC to Bus Bridge Signal List
The following MWIC Bus Bridge interface signals are internal to the processor island and will not
appear on the CPU Island:

Table 9 MWIC to IBUS Interface

Name Direction Width Description

mwic_rspack Input 1 Acknowledgement from the MWIC to say that it has received a
valid 64-bit data item. Active High

mwic_cmdval Input 1 Validates the command cell. Active High
mwic_eop Input 1 Signifies end of packet and only asserted on the fourth and final

command cell. Active High
mwic_address Input 32 Physical byte address of instruction word to be fetched
mwic_cmdack Output 1 This is the signal from the bus bridge that acknowledges the

receipt of a valid command
mwic_rdata Output 64 This is the returning 64-bit instruction word returning from the

bus bridge.

Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge) Bus Interfaces

40 ARC® 700 External Interfaces Reference

Name Direction Width Description

mwic_rspval Output 1 Validates ‘mwic_rdata’
mwic_rerror Output 1 Response error. Bus errors are transferred directly to the ARC

700 core via the BVCI interface.

MWIC Bus Bridge to External Bus System Signal List
The following MWIC Bus Bridge interface signals may appear on the CPU Island:

Table 10 Bus Bridge to External Memory System

Name Direction Width Description

iini_rspack Input 1 Acknowledgement from the bus bridge to say
that it has received a valid 64-bit data item.
Active High

iini_cmdval Input 1 Validates the command cell. Active High
iini_eop Input 1 Signifies end of packet and only asserted on the

fourth and final command cell. Active High
iini_address Input 32 Physical byte address of instruction word to be

fetched
iini_cmdack Output 1 This the signal from the memory bus system that

acknowledges the receipt of a valid command
iini_rdata Output 64 This is the 64-bit instruction word returning

from the memory bus system
iini_rspval Output 1 Validates ‘iini_rdata’
iini_rerror Output 1 Response error. Bus errors are transferred

directly to the ARC 700 core via the BVCI
interface.

MWIC Unimplemented Signal List
Both the MWIC BVCI Target interface and bus bridge omit some signals from the BVCI protocol.
These signals are omitted because they are always constant. If required, a tie value can be used as
show in Table 11.

Table 11 Unimplemented BVCI Interface Signals on th e MWIC to IBUS Interface or IBUS to External
Memory

Name Direction Width Tied Value Description

mwic_cmd\iini_cmd Input 2 2’b01 Command, which for this
interface is always a read
from the MWIC.

mwic_contig\iini_contig Input 1 1 States that the addresses
provided are contiguous.
Always true from the
MWIC.

mwic_wrap\iini_wrap Input 1 1 States that the addresses
provided are critical word
first, wrap around format.
This is always true from the

Bus Interfaces Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)

ARC® 700 External Interfaces Reference 41

Name Direction Width Tied Value Description

MWIC.
mwic_constant\iini_constant Input 1 0 Implies a constant address.

Never true.
mwic_plen\iini_plen Input 6 32 Total number of bytes that

is required. Always 32.
mwic_be\iini_be Input 8 8’bff Byte enable signal. Always

has value 0xFF in this case.
mwic_reop\iini_reop Output 1 - End of Response Packet.

Not used by MWIC.

Big-Endian Configuration
When the ARC 700 processor is configured as a big-endian system, the 32-bit local data is
appropriately aligned within the 64-bit data in the system memory.

Interface Timing
The MWIC module only performs read accesses, with a packet size of 32 bytes (burst of four 64 bits
cells). The interaction between the MWIC BVCI Initiator interface and the bus bridge interface is
described, however the transactions between the bus bridge and memory bus system are identical.

 cpu_clk

mwic_cmdval

mwic_address[31:0]

mwic_eop

mwic_cmdack

mwic_rsval

mwic_rdata[63:0]

mwic_rspack

00000000 00000008 00000010 00000018

0706050403020100 0F0E0D0C0B0A0908 1716151413121110 1F1E1D1C1B1A1918

Figure 22 MWIC Target Interface Read Access

1. In the diagram the MWIC initiates the start of an access by asserting the command valid signal
(mawic_cmdval = 1) and presents the first address of the wrap around style burst transfer on the
address bus (mwic_address).

2. This first command cell is then accepted by the IBUS target interface by asserting the command
acknowledgement signal (mwic_cmdack = 1) either in the same clock cycle (known as default
acknowledgement), or after one or more clock cycles later (Figure 22).

3. With each new command acknowledgement, the MWIC initiator present the next address,
qualifying it with the command valid signal each time. At the last address cell, the End Of Packet
signal is asserted as well.

4. When the data of this access is available one or more cycles after the beginning of the access, the
IBUS module presents it on the data bus (mwic_rdata) and qualifies it with the response valid
signal (mwic_rspval = 1). Each data cell is acknowledged by the initiator interface using the
response acknowledgement signal (mwic_rspack). Wait cycles can be inserted between each data
cell by de-asserting either the response valid and/or response acknowledgement signal.

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

42 ARC® 700 External Interfaces Reference

DMP to Memory Bus System (via Bus Bridge)
The DMP unit does not connect directly to the memory bus systems. An intermediate bus bridge is
used as shown in the following sections:

• DMP and Bus Bridge Block Diagram

• DMP to Bus Bridge Signal List

• DMP Bus Bridge to External Bus Signal List

• DMP Unimplemented Signal List

• Big-Endian Configuration

• Interface Timing

DMP and Bus Bridge Block Diagram

DMP Bus Bridge
(IBUS)

dbu_cmdval

dbu_eop

dbu_address

dbu_cmdack

dbu_rdata
dbu_rspval

Command Bus

Response Bus

BV
CI
Init
iat
or
Int
erf
ace

BV
CI
Tar
get
Int
erf
ace

32 bits

64 bits

8 bits
2 bits

dbu_wdata
dbu_plen
dbu_cmd
dbu_be

6 bits

dbu_eop

64 bits

dini_cmdval

dini_eop

dini_address

dini_cmdack

dini_rdata
dini_rspval

Command Bus

Response Bus

32 bits

64 bits

8 bits
2 bits

dini_wdata
dini_plen
dini_cmd

dini_be

6 bits

dini_eop

64 bits

BV
CI
Cu
sto
me
r
Int
erf
ace

External
Memory Bus
System

dbu_rerror dini_rerror

Figure 23 DMP to IBUS Interface

DMP to Bus Bridge Signal List
The following DMP Bus Bridge interface signals are internal to the processor island and will not
appear on the CPU Island:

Table 12 DMP to IBUS Interface

Signal Direction Bus Width Description

dbu_address Input 32 Physical byte address. It must be updated on every cycle
during a burst.

dbu_be Input 8 Byte Enables. They can be byte, word, long word or double
long words sized transactions.

dbu_cmd Input 2 Command. The types that can be issued by the DMP are:

Read – 0x1

Write – 0x2

Locked Read – 0x3
dbu_cmdval Input 1 Validates the command cell. The values on the command

bus are valid when this signal is true.
dbu_eop Input 1 End of Packet. This signal is asserted on the last burst cycle

to indicate the end of that burst request.

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

ARC® 700 External Interfaces Reference 43

Signal Direction Bus Width Description

dbu_plen Input 6 Describes the packet length in bytes:

Byte – 0x1

Word (16 bits) – 0x2

Longword (32 bits) – 0x4

Burst of 32 bytes (4 cells packet) – 0x20
dbu_wdata Input 64 Write Data. This is the data from a write.
dbu_cmdack Output 1 Command Acknowledge. Acknowledges the valid command

cell.
dbu_rdata Output 64 Read Data. This is the returning data from a read request.
dbu_reop Output 1 End of packet on the response bus.
dbu_rspval Output 1 Response Valid.
dbu_rerror Output 1 Response error. Bus errors are transferred directly to the

ARC 700 core via the BVCI interface.

DMP Bus Bridge to External Bus Signal List
The following DMP Bus Bridge interface signals may appear on the CPU Island:

Table 13 Bus Bridge to Memory Bus System

Signal Direction Bus Width Description

dini_address Input 32 Physical byte address. It needs to be updated on every cycle
during a burst.

dini_be Input 8 Byte Enables. They can be byte, word, long word or double
long words sized transactions.

dini_cmd Input 2 Command. The types that can be issued by the DMP are:

Read – 0x1

Write – 0x2

Locked Read – 0x3
dini_cmdval Input 1 Validates the command cell. The values on the command

bus are valid when this signal is true.
dini_eop Input 1 End of Packet. This signal is asserted on the last burst cycle

to indicate the end of that burst request.
dini_plen Input 6 Describes the packet length in bytes:

Byte – 0x1

Word (16 bits) – 0x2

Longword (32 bits) – 0x4

Burst of 32 bytes (4 cells packet) – 0x20
dini_wdata Input 64 Write Data. This is the data from a write.
dini_cmdack Output 1 Command Acknowledge. Acknowledges the valid

command cell.
dini_rdata Output 64 Read Data. This is the returning data from a read request.

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

44 ARC® 700 External Interfaces Reference

Signal Direction Bus Width Description

dini_reop Output 1 End of packet on the response bus.
dini_rspval Output 1 Response Valid.
dini_rerror Output 1 Response error. Bus errors are transferred directly to the

ARC 700 core via the BVCI interface.

DMP Unimplemented Signal List
The DMP BVCI Target interface omits some signals from the BVCI protocol. If required, a tie value
can be used as show in Table 14.

Table 14 Unimplemented BVCI Interface Signals

Signal Direction Bus
Width

Tied
Value

Description

dbu_contig\dini_contig Input 1 1 Contiguous Operation. This is
tied high.

dbu_rspack\dini_rspack Input 1 1 Response Acknowledge.
Indicates that the received valid
data has been acknowledged.
This signal is always asserted
high.

dbu_wrap\dini_wrap Input 1 1 Burst Wrap Around. Asserted
on the end of cache line
boundary to wrap around thus
achieving critical word first
requests. This is tied high.

dbu_constant\dini_constant Input 1 0 Implies a constant address.
Never true.

Big-Endian Configuration
When the ARC 700 processor is configured as a big-endian system, the 32-bit local data is
appropriately aligned within the 64-bit data in the system memory.

Interface Timing
The DMP BVCI interface is used to perform direct load\stores and data cache refills\ data write backs
to and from main memory. The interaction between the DMP BVCI Initiator interface and the bus
bridge interface is described, however the transactions between the bus bridge and memory bus
system are identical.

The transactions can be classed into several types of operations:

• Read Type I – A contiguous cache line fill where the requested data is in the first 64-bit cell

• Read Type II – A cache line fill where the requested data is not in the first 64-bit cell and the
burst request wraps around to complete the burst read.

• Read Type III – A single byte, word, or longword access when all the ways are locked and there
is a cache miss or an access is made to an uncached location.

• Write Type I – A contiguous cache line writeback is performed to physical memory.

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

ARC® 700 External Interfaces Reference 45

• Write Type II – A single byte, word, or longword writeback is performed to physical memory.

• Locked Read – A longword, word or byte read access that locks the memory controller so that the
next access is serviced from the DMP interface. All other interfaces are ignored until this
happens.

Each of the operations use standard BVCI transactions, performed using either a single cell packet
transfer or a burst of four cell transfer.

Single Cell Read Accesses
The DMP uses single cell read accesses to perform read type III operations.Figure 24 shows an
example timing diagram.

 cpu_clk

dbu_cmdval

dbu_address[31:0]

dbu_be[7:0]

dbu_cmd[1:0]

dbu_plen[5:0]

dbu_wdata[63:0]

dbu_eop

dbu_cmdack

dbu_rspval

dbu_rdata[63:0]

dbu_reop

00000010

FF

1

01

0706050403020100

Figure 24 Single Cell Packet Read Access

In the diagram the DMP initiates the start of an access by asserting the command valid signal
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet
(dbu_eop) and access command (dbu_cmd) of the access on the command bus.

This first command cell is then accepted by the IBUS target interface by asserting the command
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default
acknowledgement), or after one or more clock cycles later.

When the data of this access is available one or more cycles after the beginning of the access, the
IBUS module presents it on the data bus (dbu_rdata) along with the end of packet signal (dbu_eop),
qualified using the response valid signal (dbu_rspval = 1).

Single Cell Write Accesses
The DMP uses single cell write accesses to perform write type II operations. Figure 25 shows an
example timing diagram.

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

46 ARC® 700 External Interfaces Reference

 cpu_clk

dbu_cmdval

dbu_address[31:0]

dbu_be[7:0]

dbu_cmd[1:0]

dbu_plen[5:0]

dbu_wdata[63:0]

dbu_eop

dbu_cmdack

dbu_rspval

dbu_rdata[63:0]

dbu_reop

00000010
FF
2
01

7060504030201000

Figure 25 Single Cell Packet Write Access on BVCI T arget Interface between DMP and IBUS

In the diagram the DMP initiates the start of an access by asserting the command valid signal
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet
(dbu_eop = 1), access command (dbu_cmd) and the write data (dbu_wdata) of the access on the
command bus.

This first command cell is then accepted by the IBUS target interface by asserting the command
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default
acknowledgement), or after one or more clock cycles later.

When the data of this access is written one or more cycles after the beginning of the access, the IBUS
module respond by asserting the end of packet signal (dbu_eop = 1) and the response valid signal
(dbu_rspval = 1).

Burst of 4 Cell Read Accesses
The DMP uses burst of four cell read accesses to perform Read Type I and Type II operations. Figure
26 shows an example timing diagram of such an access.

 cpu_clk
dbu_cmdval
dbu_address[31:0]
dbu_be[7:0]
dbu_cmd[1:0]
dbu_plen[5:0]
dbu_wdata[63:0]
dbu_eop
dbu_cmdack

dbu_rspval
dbu_rdata[63:0]
dbu_reop

00000018 00000000 00000008 00000010

FF
1
20

1F1E1D1C1B1A1918 0706050403020100 0F0E0D0C0B0A0908 1716151413121110

Figure 26 Burst of 4 Cell Packet Read Access on BVC I Target Interface between DMP and IBUS

Bus Interfaces DMP to Memory Bus System (via Bus Bridge)

ARC® 700 External Interfaces Reference 47

In the diagram the DMP initiates the start of an access by asserting the command valid signal
(dbu_cmdval = 1) and presents the address (dbu_address), packet length (dbu_plen), end of packet
(dbu_eop = 0) and access command (dbu_cmd = 1 = Read) of the access on the command bus.

This first command cell is then accepted by the IBUS target interface by asserting the command
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default
acknowledgement), or after one (as in the example above) or more clock cycles later.

With each new command acknowledgement, the DMP initiator present the next address, qualifying it
with the command valid signal each time. The address is normally incremented by 8 bytes, however,
when the address crosses the boundary of the packet length, the address wraps around to the first byte
address of the packet boundary, which in the case of the example above, is address 0 in the second
command cell. At the last address cell, the End Of Packet signal is asserted (dbu_eop = 1) as well to
denote that the command packet is completed.

When the data of this access is available one or more cycles after the beginning of the access, the
IBUS module presents it on the data bus (dbu_rdata) and qualifies it with the response valid signal
(dbu_rspval = 1). Each data cell is acknowledged by the initiator interface by default. Wait cycles
can be inserted between each data cell by de-asserting the response valid.

Burst of 4 Cell Write Accesses
The DMP uses burst of four cell write accesses to perform Write Type I operations. Figure 27 shows
an example timing diagram of such an access. In the diagram the DMP initiates the start of an access
by asserting the command valid signal (dbu_cmdval = 1) and presents the address (dbu_address),
packet length (dbu_plen), end of packet (dbu_eop = 0), write data (dbu_wdata) and access command
(dbu_cmd = 2 = Write) of the access on the command bus.

This first command cell is then accepted by the IBUS target interface by asserting the command
acknowledgement signal (dbu_cmdack = 1) either in the same clock cycle (known as default
acknowledgement), or after one (as in the example above) or more clock cycles later. With each new
command acknowledgement, the DMP initiator presents the next address and data, qualifying it with
the command valid signal each time. The address is normally incremented by 8 bytes, however, when
the address crosses the boundary of the packet length, the address wraps around to the first byte
address of the packet boundary, which in the case of the Figure 26, is address 0 in the second
command cell. At the last command cell, the End Of Packet signal is asserted (dbu_eop = 1) as well
to denote that the command packet is completed.

When the data of this access is written one or more cycles after the beginning of the access, the IBUS
module responds using the valid signal (dbu_rspval = 1). Each data cell is acknowledged by the
initiator interface by default. Wait cycles can be inserted between each response cell by de-asserting
the response valid signal.

DMP to Memory Bus System (via Bus Bridge) Bus Interfaces

48 ARC® 700 External Interfaces Reference

 cpu_clk
dbu_cmdval
dbu_address[31:0]
dbu_be[7:0]
dbu_cmd[1:0]
dbu_plen[5:0]
dbu_wdata[63:0]
dbu_eop
dbu_cmdack

dbu_rspval
dbu_rdata[63:0]
dbu_reop

00000018 00000000 00000008 00000010

FF
2
20

1F1E1D1C1B1A1918 0706050403020100 0F0E0D0C0B0A0908 1716151413121110

Figure 27 Burst of 4 Cell Packet Write Access on BV CI Target Interface between DMP and IBUS

Single Cell locked Read Accesses
The DMP uses single cell locked read accesses to perform Locked Read operations. Figure 28 shows
an example timing diagram of such an access.

 cpu_clk
dbu_cmdval
dbu_address[31:0]
dbu_be[7:0]
dbu_cmd[1:0]
dbu_plen[5:0]
dbu_wdata[63:0]
dbu_eop
dbu_cmdack

dbu_rspval
dbu_rdata[63:0]
dbu_reop

00000010 00000010

FF FF
3 2
01 01

0F0E0D0C0B0A0908

0706050403020100

Figure 28 Locked Read Access followed by Single Wri te Access on BVCI Target Interface between DMP
and IBUS

1. The first read access proceeds in a very similar way to a single read access except that the
command is a Locked Read (dbu_cmd = 0x3).

2. Once the command cell is acknowledged in the third clock cycle, the external arbiter design
must lock the bus to the same initiator (DMP-bus bridge), giving it default grant until it
receives a single or burst write access from the same DMP-bus bridge initiator interface.

49 ARC® 700 External Interfaces Reference

Chapter 5 — Closely Coupled Memories (CCM)
The following subsections cover the direct memory interfaces that are available on the Instruction
Closely Coupled Memory (ICCM) and the Data Closely Coupled Memory (DCCM):

• Closely Coupled Memories

• CCM DMI Interfaces

Closely Coupled Memories
CCMs are used to complement or replace traditional instruction and data cache memories. Unlike
standard cache architectures, CCMs are passive memories that attach to the instruction and data fetch
interfaces of the processor, and provide fast data and program code access. It is the responsibility of
the programmer to ensure that valid program data exists in the ICCM and valid data in the DCCM.

FCH DEC SEL WB ALN RF EX

ICCM

DA2

DA1

DCCM
RAM
CTRL

DBU

EA

DAWB

ARC 700 Processor Integer Pipeline
Commit
Point

Write -back
to RF stage

Write -back
to RF stage

LD/ST Access Into ICCM

ICCM DMI DCCM DMI
Figure 29 ICCM and DCCM Configuration Example

CCM DMI Interfaces
The ICCM and DCCM memories support a direct memory interface into the RAMs (DMI). The
purpose of the DMI is to allow an external client, such as a DMA engine, to initialize the contents of

CCM DMI Interfaces Closely Coupled Memories (CCM)

50 ARC® 700 External Interfaces Reference

the RAMs prior to processor execution. It is also possible to modify the contents of the RAMs whilst
the CPU is in a ‘run’ state, however data coherency issues must be considered.

CCM DMI Signal List
The following CCM DMI BVCI interface signals may appear on the CPU Island.

Table 15 DCCM Direct Memory Interface (DMI)

ICCM Signals DCCM Signals Direction Bus
Width

Description

iccm_dmi_address dccm_address Input 32 Byte Address. The ccm_address is
updated on every cycle during a
burst.

iccm_dmi_be dccm_be Input 4 Byte Enables. The requests to this
interface can be of the size byte,
word or longword (32-bit),
therefore this signal should be set
depending upon the size of the
requested cell.

iccm_dmi_cmd dccm_cmd Input 2 Command. The type of command to
be performed is specified by this
bus:

Read – 0x1

Write – 0x2

This bus is qualified with
dccm_cmdval.

iccm_dmi_cmdval dccm_cmdval Input 1 Command is Valid. The values on
ccm_cmd, ccm_address, are valid
when this signal is true.

iccm_dmi_contig dccm_contig Input 1 Unused
iccm_dmi_eop dccm_eop Input 1 End of Packet. The signal

dccm_eop is asserted on the last
burst cycle to indicate the end of
that burst request.

iccm_dmi_plen dccm_plen Input 6 Unused
iccm_dmi_rspack dccm_rspack Input

1 Response Acknowledge. This
signal tells the CCM that the
received valid data has been
acknowledged.

iccm_dmi_wdata dccm_wdata Input 32 Write Data. This is the data from a
write request (dccm_cmd = 0x2)
and is qualified when dccm_cmdval
is true.

iccm_dmi_wrap dccm_wrap Input 1 Unused

Closely Coupled Memories (CCM) CCM DMI Interfaces

ARC® 700 External Interfaces Reference 51

ICCM Signals DCCM Signals Direction Bus
Width

Description

iccm_dmi_cmdack dccm_cmdack Output 1 Command Acknowledge. This
signal acknowledges every cell
during an operation.

iccm_dmi_rdata dccm_rdata Output 32 Read Data. This is the returning
data from a read request
(dccm_cmd = “01”) and is qualified
when dccm_rspval is true.

iccm_dmi_reop dccm_reop Output 1 End of packet.
iccm_dmi_rerror dccm_rerror Output 1 Unused
iccm_dmi_rspval dccm_rspval Output 1 Response Valid. The dccm_rspval

acknowledges both read and write
data.

Interface Reset State
Upon a global reset all signals on this interface are set to zero. This is also expected to be the state of
the interface at time zero for simulation purposes.

CCM DMI Behavior
The CCM DMI interfaces supports all the command modes provided by the BVCI protocol (Refer to
the Virtual Component Interface Standard), and the capabilities of both the ICCM and DCCM are
identical.

The CCM’s support the following types of operation:

• Read Type I – A burst read operation

• Read Type II – A single cell read operation of a byte, word, or longword (32-bits) size

• Write Type I – A burst write operation

• Write Type II – A single cell write operation of a byte, word, or longword (32-bits) size

Read Type I Timing Behavior
The memory requesting device issues a read burst requests to the CCM controller. A cycle-by-cycle
description:

1. Time = 10ns. The address is set up via ccm_address = ADDR0 when a read (ccm_cmd = 0x1)
is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 32
bytes, i.e. ccm_plen = 0x20. The write data (ccm_wdata) is ignored. Also ccm_contig and
ccm_wrap are ignored, because the CCM control module does not service the request
differently if any of these are set. All bytes are returned during read operations, so ccm_be is
actually ignored by the CCM.

2. Time = 20ns. The CCM control module acknowledges the read request (ccm_cmdack = ‘1’).
The address, access type, and qualifier signals are maintained, i.e. ccm_address = ADDR0,
ccm_cmd = 0x1 and ccm_cmdval = ‘1’ respectively.

3. Time = 30ns. Data (ccm_rdata = DATA0) is returned to the memory requesting device and
it is valid (ccm_rspval = ‘1’). The memory requesting device has the response
acknowledgement default set in this example (ccm_rspack = ‘1’), which means that the
device immediately acknowledges the returning data. Also, the address is set up for the next

CCM DMI Interfaces Closely Coupled Memories (CCM)

52 ARC® 700 External Interfaces Reference

access via ccm_address = ADDR1 for the read (ccm_cmd = 0x1) is performed. This access is
valid (ccm_cmdval = ‘1’). This is a contiguous access (ccm_contig = ‘1’) and all bytes are to
be written back to the CCM (ccm_be = 0xFF). The write data (ccm_wdata) is ignored. The
CCM control module acknowledges the read request (ccm_cmdack = ‘1’) made on this cycle.

4. Time = 40ns. Data (ccm_rdata = DATA1) is returned to the CCM control module and it is
valid (ccm_rspval = ‘1’). The memory requesting device also acknowledges receipt of the
received data (ccm_rspack = ‘1’). The address is set up for the next access (ccm_address =
ADDR2) in the burst sequence. The CCM control module acknowledges the read request
(ccm_cmdack = ‘1’) made on this cycle.

5. Time = 50ns. Data (ccm_rdata = DATA2) is returned to the CCM control module and it is
valid (ccm_rspval = ‘1’). The requesting device also acknowledges receipt of the received
data (ccm_rspack = ‘1’). The address is set up for the next access (ccm_address = ADDR3)
in the burst sequence. This is the last request in the burst sequence, which is indicated by the
end of packet being set (ccm_eop = ‘1’).

6. Time = 60ns. Data (ccm_rdata = DATA3) is returned to the CCM control module and it is
valid (ccm_rspval = ‘1’). The CCM control module confirms that this data is last in the burst
(ccm_reop = ‘1’) and the requesting device acknowledges receipt of the received data
(ccm_rspack = ‘1’). The requesting device has no more valid requests to make to the CCM
(ccm_cmdval = ‘0’).

7. Time = 70ns. There are no further requests by the requesting device (ccm_cmdval = ‘0’).

 0ns 10ns 20ns 30ns 40ns 50ns 60ns 70ns

clk

ccm_address[31:0]

ccm_be[3:0]

ccm_cmd[1:0]

ccm_cmdval

ccm_contig

ccm_eop

ccm_plen[5:0]

ccm_rspack

ccm_wdata[31:0]

ccm_wrap

ccm_cmdack

ccm_rdata[31:0]

ccm_reop

ccm_rspval

ADDR0 ADDR1 ADDR2 ADDR3

FF

1

20

DATA0 DATA1 DATA2 DATA3

Figure 30 Read Burst on the CCM Burst Interface

Read Type II Timing Behavior
The memory requesting device issues a single cell read request to the CCM. A cycle-by-cycle
description:

Closely Coupled Memories (CCM) CCM DMI Interfaces

ARC® 700 External Interfaces Reference 53

1. Time = 10ns. The address is set up via ccm_address = ADDR. A read (ccm_cmd = 0x1) is
performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 4
bytes, i.e. ccm_plen= 0x04. The minimum amount of data that can be read on a BVCI
interface is a cell, which in this case is 4 bytes (32-bits). All 4 bytes will be sent back,
because during read operations the level of granularity is one cell. It is up to the memory
requestor to extract the relevant bytes, when it receives the requested cells. As it is a read
operation both the write data (ccm_wdata) and the byte enables (ccm_be) are ignored.

2. Time = 20ns. The CCM acknowledges the read request (ccm_cmdack = ‘1’). The address,
access type, and qualifier signals are maintained, i.e. ccm_address = ADDR, ccm_cmd = 0x1
and ccm_cmdval = ‘1’ respectively.

3. Time = 30ns. There are no further requests by the CCM control (ccm_cmdval = ‘0’). Data
(ccm_rdata = DATA) is returned to the CCM control module and it is valid (ccm_rspval =
‘1’). The memory requestor also acknowledges receipt of the received data (ccm_rspack =
‘1’). The write data (ccm_wdata) is ignored. There are no further requests by the memory
requestor (dccm_cmdval = ‘0’).

 0ns 10ns 20ns 30ns 40ns 50ns

clk

ccm_address[31:0]

ccm_be[3:0]

ccm_cmd[1:0]

ccm_cmdval

ccm_contig

ccm_eop

ccm_plen[5:0]

ccm_rspack

ccm_wdata[31:0]

ccm_wrap

ccm_cmdack

ccm_rdata[31:0]

ccm_reop

ccm_rspval

ADDR

0F

1

04

DATA

Figure 31 Single Cell Read Operation on the CCM DMI

Write Type I Timing Behavior
The memory requestor issues a burst write request to the CCM. A cycle-by-cycle description:

1. Time = 10ns. The address is set up via ccm_address = ADDR0 when a write (ccm_cmd =
0x2) is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length
of 32 bytes, i.e. ccm_plen = 0x20. This is a contiguous access (ccm_contig = ‘1’) and all
bytes are to be written to the CCM (ccm_be = 0xFF). The write data (ccm_wdata = DATA0)
is valid.

CCM DMI Interfaces Closely Coupled Memories (CCM)

54 ARC® 700 External Interfaces Reference

2. Time = 20ns. The CCM acknowledges the write request (ccm_cmdack = ‘1’). The address,
data, access type, and qualifier signals are maintained, i.e. ccm_address = ADDR0,
ccm_wdata = DATA0, ccm_cmd = 0x2 and ccm_cmdval = ‘1’ respectively.

3. Time = 30ns. The write operation has completed successfully (ccm_rspval = ‘1’). The
memory requestor acknowledges receipt of the written data (ccm_rspack = ‘1’). The address
is set up for the next access via ccm_address = ADDR1 and write data ccm_wdata =
DATA1. The next access is immediately acknowledged (ccm_cmdack = ‘1’).

4. Time = 40ns. The write operation has completed successfully (ccm_rspval = ‘1’). The
memory arbitrator acknowledges receipt of the written data (ccm_rspack = ‘1’). The address
is set up for the next access via ccm_address = ADDR2 and write data ccm_wdata =
DATA2. The next access is immediately acknowledged (ccm_cmdack = ‘1’).

5. Time = 50ns. The write operation has completed successfully (ccm_rspval = ‘1’). The
memory requestor acknowledges receipt of the written data (ccm_rspack = ‘1’). The address
is set up for the next access via ccm_address = ADDR3 and write data ccm_wdata =
DATA3. This is the last request in the burst (ccm_eop = ‘1’). The last access is immediately
acknowledged (ccm_cmdack = ‘1’).

6. Time = 60ns. The write operation has completed successfully (ccm_rspval = ‘1’). The CCM
control module confirms that this data is last in the burst (ccm_reop = ‘1’) and the memory
requestor acknowledges receipt of the received data (ccm_rspack = ‘1’). The CCM control
module has no more valid requests to make to the CCM (ccm_cmdval = ‘0’). The address,
write data and access type can be ignored.

7. Time = 70ns. There are no further requests by the memory requestor (ccm_cmdval = ‘0’).

 0ns 10ns 20ns 30ns 40ns 50ns 60ns 70ns

clk

ccm_address[31:0]

ccm_be[3:0]

ccm_cmd[1:0]

ccm_cmdval

ccm_contig

ccm_eop

ccm_plen[5:0]

ccm_rspack

ccm_wdata[31:0]

ccm_wrap

ccm_cmdack

ccm_rdata[31:0]

ccm_reop

ccm_rspval

ADDR0 ADDR1 ADDR2 ADDR3

FF

2

20

DATA0 DATA1 DATA2 DATA3

Figure 32 Write Burst Operation to the CCM DMI

Write Type II Timing Behavior
The memory requestor issues a single cell write request to the CCM. A cycle-by-cycle description:

Closely Coupled Memories (CCM) CCM DMI Interfaces

ARC® 700 External Interfaces Reference 55

1. Time = 10ns. The address is set up via ccm_address = ADDR when a write (ccm_cmd = 0x2)
is performed. This access is valid (ccm_cmdval = ‘1’) and this access has a burst length of 4
bytes, i.e. ccm_plen = 0x4. The lower 4 bytes are to be written to the CCM (ccm_be = 0x0F).
The write data (ccm_wdata = DATA) is valid.

2. Time = 20ns. The CCM control module acknowledges the write request (ccm_cmdack = ‘1’).
The address, data, access type, and qualifier signals are maintained, i.e. ccm_address =
ADDR, ccm_wdata = DATA, ccm_cmd = 0x2 and ccm_cmdval = ‘1’ respectively.

3. Time = 30ns. The write operation has completed successfully (ccm_rspval = ‘1’). The CCM
control module confirms that this data is last in the burst (ccm_reop = ‘1’) and the memory
requestor acknowledges receipt of the received data (ccm_rspack = ‘1’). There are no further
requests by the memory requestor (ccm_cmdval = ‘0’).

4. Time = 40ns. The memory requestor has no more valid requests to make to the CCM
(ccm_cmdval = ‘0’). The address, write data and access type can be ignored.

 0ns 10ns 20ns 30ns 40ns 50ns

clk

ccm_address[31:0]

ccm_be[3:0]

ccm_cmd[1:0]

ccm_cmdval

ccm_contig

ccm_eop

ccm_plen[5:0]

ccm_rspack

ccm_wdata[31:0]

ccm_wrap

ccm_cmdack

ccm_rdata[31:0]

ccm_reop

ccm_rspval

ADDR

0F

2

04

DATA

Figure 33 Single Cell Write Operation on the CCM DM I

56 ARC® 700 External Interfaces Reference

Chapter 6 — XY Memory
The following subsections cover the direct memory interfaces that are available on the XY Memory
Module:

• XY Memory

• XY DMI interface

XY Memory XY Memory

ARC® 700 External Interfaces Reference 57

XY Memory
The XY Memory module is an optional DSP extension to the ARC 700 processor core. This
extension provides a high data throughput closely coupled memory, accessible via pointer, that can be
automatically updated. The XY memory extension contains two memory regions of equal size, each
configurable at build time from 4K up to 32K each. Also configurable at build time is a direct
memory interface (DMI). The DMI enables an external client, such as a DMA engine, to perform the
following:

• Initialize the contents of the RAMs prior to processor execution.

• Modify or upload the contents of the RAMs whilst the CPU is running.

• Read or offload the contents of the RAMs whilst the CPU is running.

Since no coherence protection is provided with the XY memory DMI port, the user has to be aware
that other software or hardware mechanisms may be required to deal with data coherency.

For more details on the XY memory module, please refer to the ARC 700 DSP Options Reference.

XY DMI interface
The XY DMI interface is an optional DMI interface. The XY DMI Signal List section lists the signals
on the DMI interface.

XY DMI Signal List
The following XY DMI BVCI interface signals may appear on the CPU Island:

Table 16 XY DMI Interface Signals

Signals Direction Bus
Width

Description

xydmi_address Input N Byte Address. It is updated on every cycle during a burst. N
varies with the size of each memory region:

• 4k per region, N = 13
• 8k per region, N = 14
• 16k per region, N = 15
• 32k per region, N = 16

xydmi_be Input 8 Byte Enables. The requests to this interface can be of the size
byte, word , longword (32-bit) or double longword (64bits).
Therefore this signal should be set depending upon the size of
the requested cell.

xydmi_cmd Input 2 Command. The type of command to be performed is specified
by this bus:

Read – 0x1
Write – 0x2
This bus is qualified with xydmi_cmdval.

XY DMI interface XY Memory

58 ARC® 700 External Interfaces Reference

Signals Direction Bus
Width

Description

xydmi_cmdval Input 1 Command is Valid. The values on xydmi_cmd,
xydmi_address, xydmi_be and xydmi_eop are valid when this
signal is true.

xydmi_eop Input 1 End of Packet. The signal dccm_eop is asserted on the last
burst cycle to indicate the end of that burst request.

xydmi_rspack Input

1 Response Acknowledge. This signal tells the XY memory
module that the received valid data has been acknowledged.

xydmi_wdata Input 64 Write Data. This is the data from a write request (xydmi_cmd
= 0x2) and is qualified when xydmi_cmdval is true.

xydmi_cmdack Output 1 Command Acknowledge. This signal acknowledges every cell
during an operation.

xydmi_rdata Output 64 Read Data. This is the returning data from a read request
(xydmi_cmd = “01”) and is qualified when xydmi_rspval is
true.

xydmi_reop Output 1 End of packet.
xydmi_rspval Output 1 Response Valid. The xydmi_rspval acknowledges both read

and write data.

The X and the Y memory regions are mapped onto the address space with the X region occupying the
lower half of the memory area and Y region occupying the upper half.

Interface Reset State
Upon a global reset all signals on this interface are set to zero. This is also expected to be the state of
the interface at time zero for simulation purposes.

XY DMI Behavior
The XY DMI interfaces supports all the command modes provided by the BVCI protocol (Refer to
the Virtual Component Interface Standard). The following types of operation are supported:

• Read Type I – A burst read operation

• Read Type II – A single cell read operation of a byte, word, longword (32 bits) or double
longword (64 bits) size.

• Write Type I – A burst write operation

• Write Type II – A single cell write operation of a byte, word, longword (32bits) or double
longword (64 bits) size.

Read Type I Timing Behavior
The memory requesting device issues a read burst request to the XY memory DMI. A cycle-by-cycle
description of an example follows:

• Time = 10ns. The burst access starts, with the address, byte enable, and read command placed on
the bus on xydmi_address, xydmi_be and xydmi_cmd respectively with xydmi_cmdval set to
high. The write data (xydmi_wdata) is ignored.

• Time = 20ns. The XY DMI default acknowledges the read request (xydmi_cmdack = ‘1’) and sets
the command acknowledge signal to low so that the next cell in the packet is not acknowledged

XY Memory XY DMI interface

ARC® 700 External Interfaces Reference 59

immediately. With the cell acknowledged, the address (xydmi_address) is incremented for the
next cell transfer.

• Time = 30ns. The request made to XY memory by the XY DMI is granted in this cycle. Wait
cycle on the BVCI command bus

• Time = 40ns. The data from XY memory is returned for the request made by XY DMI and is
registered and presented onto the read data bus (xydmi_rdata), with the valid signal
(xydmi_rspval) set to high.

• Time = 50ns. The response is acknowledged by xydmi_rspack being high. This sets the
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command
cell, and the response valid (xydmi_rspval) signal to go low.

• Time = 60ns to 130ns, repeats the same process between 10ns to 50ns, but for the second and
third command cell.

• Time = 140ns, The last command cell is acknowledged, which has xydmi_eop set to high, and set
the command acknowledge signal to low.

• Time = 160ns. Read data becomes available on the response bus.

• Time = 170ns. Since xydmi_rspack is low, the response cell has not been acknowledged and the
XY DMI interface keeps the response cell for another cycle on bus.

• Time = 180ns. With xydmi_rspack at high, the response cell has been acknowledged. This
completes the burst (packet) transfer.

0ns 50ns 100ns 150ns

xydmi_cmdval

xydmi_cmd[1:0]

xydmi_address[12:0]

xydmi_be[7:0]

xydmi_eop

xydmi_wdata[63:0]

xydmi_cmdack

xydmi_rspval

xydmi_rdata[63:0]

xydmi_rspack

"01"

Addr0 Addr1 Addr2 Addr3

"1111_1111"

Data0 Data1 Data2 Data3

Figure 34 Read Burst Access on XY Memory DMI.

Read Type II Timing Behavior
The memory requesting device issues a single read request to the XY memory DMI. A cycle-by-cycle
description of an example follows:

• Time = 10ns. The access starts, with the address, byte enable, and read command placed on the
bus on xydmi_address, xydmi_be and xydmi_cmd respectively with xydmi_cmdval set to high.
The end of packet signal (xydmi_eop) is also set to high to indicate that it is a single access. The
write data (xydmi_wdata) is ignored.

• Time = 20ns. The XY DMI default acknowledges the read request (xydmi_cmdack = ‘1’) and sets
the command acknowledge signal to low so that the next command cell is not acknowledged

XY DMI interface XY Memory

60 ARC® 700 External Interfaces Reference

immediately. With the cell acknowledged, the command valid signal (xydmi_cmdval) is de-
asserted.

• Time = 30ns. The request made to XY memory by the XY DMI is granted in this cycle. Wait
cycle on the BVCI command bus

• Time = 40ns. The data from XY memory is returned for the request made by XY DMI and is
registered and presented onto the read data bus (xydmi_rdata), with the valid signal
(xydmi_rspval) set to high.

• Time = 50ns. The response is acknowledged by xydmi_rspack being high. This sets the
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command
cell, and the response valid (xydmi_rspval) signal to goes low.

0ns 10ns 20ns 30ns 40ns 50ns

xydmi_cmdval

xydmi_cmd[1:0]

xydmi_address[12:0]

xydmi_be[7:0]

xydmi_eop

xydmi_wdata[63:0]

xydmi_cmdack

xydmi_rspval

xydmi_rdata[63:0]

xydmi_rspack

"01"

Addr0

"1111_1111"

Data0

Figure 35 Single Read Access on XY Memory DMI.

Write Type I Timing Behavior
The memory requesting device issues a write burst request to the XY memory DMI. A cycle-by-cycle
description of an example follows:

• Time = 10ns. The burst access starts, with the address, byte enable, write data and write
command placed on the bus on xydmi_address, xydmi_be, xydmi_wdata and xydmi_cmd
respectively with xydmi_cmdval set to high.

• Time = 20ns. The XY DMI default acknowledges the write request (xydmi_cmdack = ‘1’) and
sets the command acknowledge signal to low so that the next cell in the packet is not
acknowledged immediately. With the cell acknowledged, the address (xydmi_address) is
incremented for the next cell transfer.

• Time = 30ns. The XY DMI made a request to XY memory and is granted in this cycle. Hence
XY DMI sets the response valid signal (xydmi_rspval) to high

• Time = 40ns. The response is acknowledged by xydmi_rspack being high. This sets the
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command
cell, and the response valid (xydmi_rspval) signal to go low.

• Time = 50ns to 100ns, repeats the same process between 10ns to 50ns, but for the second and
third command cell.

XY Memory XY DMI interface

ARC® 700 External Interfaces Reference 61

• Time = 110ns, The last command cell is acknowledged, which has xydmi_eop set to high, and set
the command acknowledge signal to low.

• Time = 120ns. Response valid (xydmi_rspval) go high.

• Time = 130ns. Since xydmi_rspack is low, the response cell has not been acknowledged and the
XY DMI interface keeps the response cell for another cycle on bus.

• Time = 140ns. With xydmi_rspack at high, the response cell has been acknowledged. This
completes the burst (packet) transfer.

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns

xydmi_cmdval

xydmi_cmd[1:0]

xydmi_address[12:0]

xydmi_be[7:0]

xydmi_eop

xydmi_wdata[63:0]

xydmi_cmdack

xydmi_rspval

xydmi_rdata[63:0]

xydmi_rspack

"10"

Addr0 Addr1 Addr2 Addr3

"1111_1111"

Figure 36 Burst Write Access on XY DMI

Write Type II Timing Behavior
The memory requesting device issues a single burst write requests to the XY memory DMI. A cycle-
by-cycle description of an example follows:

• Time = 10ns. The access starts, with the address, byte enable, write data and write command
placed on the bus on xydmi_address, xydmi_be, xydmi_wdata and xydmi_cmd respectively with
xydmi_cmdval set to high. The end of packet signal (xydmi_eop) is also set to high to indicate
that it is a single access.

• Time = 20ns. The XY DMI default acknowledges the write request (xydmi_cmdack = ‘1’) and set
the command acknowledge signal to low so that the next cell in the packet is not acknowledged
immediately. With the cell acknowledged, the command valid signal (xydmi_cmdval) is de-
asserted.

• Time = 30ns. The XY DMI made a request to XY memory and is granted in this cycle. And
hence XY DMI sets the response valid signal (xydmi_rspval) to high.

• Time = 40ns. The response is acknowledged by xydmi_rspack being high. This sets the
command acknowledgment signal (xydmi_cmdack) to go high, ready to accept the next command
cell, and the response valid (xydmi_rspval) signal to goes low.

XY DMI interface XY Memory

62 ARC® 700 External Interfaces Reference

0ns 10ns 20ns 30ns 40ns 50ns

xydmi_cmdval

xydmi_cmd[1:0]

xydmi_address[12:0]

xydmi_be[7:0]

xydmi_eop

xydmi_wdata[63:0]

xydmi_cmdack

xydmi_rspval

xydmi_rdata[63:0]

xydmi_rspack

"10"

Addr0

"1111_1111"

Data0

Figure 37 Single Write Access on XY DMI

ARC® 700 External Interfaces Reference 63

Chapter 7 — Processor Signals
The processor signals are used to run, clock and interrupt the processor core.

The processor signals are covered in the following subsections:

• Processor Control Interface

• Interrupt Unit

• Test

Processor Control Interface
The processor interface signals are used to run and clock the processor core. The following sections
cover the processor control interface in more detail:

• Processor Signal List

• Clocks

• Reset

• Start

• Run

Processor Signal List
The following processor control interface signals may appear on the CPU Island:

Table 17 Processor Control Signal List

Signal Direction Description

clk_cpu Input Processor Core Clock.
clk_sys Input External Memory System Clock.
rst_a Input Reset - Asynchronous, and active high.
ctrl_cpu_start_r Input Start - Depends on configuration.
ctrl_arch_status32_h_r Output Run - Set high when processor is halted.

Clocks
The ARC 700 processor is a fully static design, and uses two positive edge clocks clk_cpu and
clk_sys.

clk_cpu is the ARC 700 processor core clock. clk_sys is the external memory system clock.

These clock nets are not buffered in the design, since it is intended that clock tree synthesis technique
will be used.

Interrupt Unit Processor Signals

64 ARC® 700 External Interfaces Reference

The supported clock frequency ratios are dependent on the particular CPU Island interfaces in the
design. For example see the BVCI Bus Bridge Clock Synchronization Unit.

For additional information on alternative CPU Island interfaces see AHB Bus Bridge Reference, AXI
Bus Bridge Reference, and ARC Legacy Bus Bridge Reference.

Reset
The reset net rst_a is asynchronous, and active high. ARC International recommends that the reset
signal be arranged to be asynchronously applied and synchronously removed. Reset should be applied
for a minimum of four clock cycles. The synthesis tool should be allowed to buffer the rst_a net.

Start
The start signal, ctrl_cpu_start_r, is used to start the processor with particular configurations that
are set to halt-on-reset.

Run
The run signal, ctrl_arch_status32_h_r is an output signal that is set high when processor is
halted.

Interrupt Unit
The ARC 700 system features a configurable interrupt unit that allows selection of 8, 16, or 32
interrupt inputs. The interrupt unit generates interrupt requests (IRQs) to the CPU and has the ability
to bring the CPU out of sleep mode when a valid interrupt request is present.

All interrupts can either be pulse or level triggered as well as having individual mask bits and priority
levels.

The number of user interrupts lines is dependant upon the number of interrupts that are configured in
ARChitect configuration tool.

Interrupt
Unit

ARC 700
Processor

irq[5-31]_n_a

Figure 38 Interrupt Interface

The following sections cover the interrupt interface in more detail:

• Feature List

• Interrupt Signal List

• Incoming Request Interface Timing

Processor Signals Interrupt Unit

ARC® 700 External Interfaces Reference 65

Feature List
• Maximum of 26 user-definable IRQs (5 to 31)

• Programmable interrupt type on all IRQs (pulse, level)

• The lowest interrupt number has the highest interrupt priority

• Programmable mask bit on all IRQs

• Programmable priority level (level 1 = low, level 2 = high) on all IRQs

• Software controlled triggers for all IRQs

Interrupt Signal List
The following interrupt interface signals may appear on the CPU Island:

Table 18 Configurable Interrupt Lines

Signal Name Total Number of User
Interrupt Lines

ARChitect
Selection

Direction Purpose

irq[5:7]_n_a 3 8 Interrupts In Interrupt Request signal

irq[8:15]_n_a 11 16 Interrupts In Interrupt Request signal

irq[16:31]_n_a 27 32 Interrupts In Interrupt Request signal

The irqxx_n_a signal can be level or pulse type and is asynchronously applied. If pulse type
interrupts are used, then the minimum width of the signal should be twice that of the interrupt unit
clock. When the irqxx_n_a signal is asserted (all interrupts are active low) it raises an interrupt
request to the interrupt unit. The interrupt unit will then decide if the signal is legal based on the
enable and mask bits. If the interrupt signal type is level, then it is up to the signal source to remove it
once the interrupt has been accepted by the CPU (this should be done by the interrupt service
routine). If the interrupt type is pulse, then the interrupt unit will register the signal and it is up to the
interrupt service routine to clear the interrupt by using the AUX_IRQ_PULSE_CANCEL register.

Incoming Request Interface Timing
Figure 39 shows a level type interrupt request. At time 10ns irqx_n_a is asserted (goes low).
Interrupt X is a level type interrupt, therefore it remains asserted until the issuing device removes it.

 10 ns 20 ns 30 ns 40 ns

clk

irqx_n_
a

Figure 39 Example Level Type Interrupt

Figure 40 shows a pulse type interrupt request. At time 10ns irqx_n_a is asserted for a minimum
period of x2 the clock period. irqx is a pulse type interrupt, therefore the processor registers the
interrupt request, and once serviced, it is the responsibility of the interrupt service routine to clear the
interrupt within the interrupt unit (using AUX_IRQ_PULSE_CANCEL).

Test Processor Signals

66 ARC® 700 External Interfaces Reference

clk

irqx_n_
a

10 20 30 40

Figure 40 Example Pulse Type Interrupt

Test
The input signal xtest_mode_atpg sets the processor in a mode which is optimized for good fault
coverage. Only present if the configuration requires some modification in test mode. Not all
configurations have this signal.

The input signal xtest_mode_rambist allows the built in self test (BIST) control unit, provided by
customers, to gain access to the RAMs. Only present if the ARChitect option -bist_muxes has been
selected.

The test interface signals are summarized in Table 19.

Test Signal List
The following test interface signals may appear on the CPU Island:

Table 19 Test Signal List

Signal Direction Description

xtest_mode_atpg Input ATPG Test Mode.
xtest_mode_rambist Input RAM BIST Test Mode.

	ARC® 700 External Interfaces Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of Interfaces
	Block Diagram
	Signal Lists

	JTAG (Joint Test Action Group) Communication Module
	JTAG Interface
	JTAG Signal List
	JTAG Pin Connector

	JTAG Programmer’s Model
	The Instruction Register
	The JTAG Status Register (Instruction Code 0x8)
	The Transaction Command Register (Instruction Code 0x9)
	The Address Register (Instruction Code 0xA)
	The Data Register (Instruction Code 0xB)
	The IDCODE register (instruction code 0xC)
	The Bypass Register (Instruction Code 0xF)
	The Boundary Scan Register (Instruction Code 0x0 and 0x1)

	JTAG Port
	The TAP Controller
	The TAP Controller State Machine
	The Debug Port
	The Host Interface to BVCI Target

	Setting Up Read/Write Transactions
	Setting up a Write Access to the ARC 700 Processor or Memory
	Accessing the Status Register
	Setting up a Read Access from the ARC 700 Processor or Memory

	JTAG Port Reset
	PC - JTAG Communications

	Bus Bridge
	Bus Bridge Block Diagram
	BVCI Protocol
	BVCI Signal List

	Bus Bridge Block Diagram
	Clock Synchronization Unit
	Toggle Unit
	Edge Detection
	Phase Detection
	Mask Generator
	Last Phase Detect

	Clock Crossing BVCI Bridge

	Bus Interfaces
	Instruction Cache (MWIC) to Memory Bus System (via Bus Bridge)
	MWIC and Bus Bridge Block Diagram
	MWIC to Bus Bridge Signal List
	MWIC Bus Bridge to External Bus System Signal List
	MWIC Unimplemented Signal List
	Big-Endian Configuration
	Interface Timing

	DMP to Memory Bus System (via Bus Bridge)
	DMP and Bus Bridge Block Diagram
	DMP to Bus Bridge Signal List
	DMP Bus Bridge to External Bus Signal List
	DMP Unimplemented Signal List
	Big-Endian Configuration
	Interface Timing

	Closely Coupled Memories (CCM)
	Closely Coupled Memories
	CCM DMI Interfaces
	CCM DMI Signal List
	Interface Reset State
	CCM DMI Behavior

	XY Memory
	XY Memory
	XY DMI interface
	XY DMI Signal List
	Interface Reset State
	XY DMI Behavior

	Processor Signals
	Processor Control Interface
	Processor Signal List
	Clocks
	Reset
	Start
	Run

	Interrupt Unit
	Feature List
	Interrupt Signal List
	Incoming Request Interface Timing

	Test
	Test Signal List

